ObjectiveTo study the effect and mechanism of lipopolysaccharide (LPS) on osteoclasts formation and its bone resorption function.MethodsBone marrow-derived macrophages (BMMs) were extracted from the marrow of femur and tibia of 4-week-old male C57BL/6 mice. Flow cytometry was used to detect BMMs. The effect of different concentrations of LPS (0, 100, 200, 500, 1 000, 2 000 ng/mL) on BMMs activity was examined by cell counting kit 8 (CCK-8) activity test. In order to investigate the effect of LPS on osteoclastogenesis, BMMs were divided into macrophage colony-stimulating factor (M-CSF) group, M-CSF+receptor activator of nuclear factor κB ligand (RANKL) group, M-CSF+RANKL+50 ng/mL LPS group, M-CSF+RANKL+100 ng/mL LPS group. After the completion of culture, tartrate resistant acid phosphatase (TRAP) staining was used to observe the formation of osteoclasts. In order to investigate the effect of LPS on the expression of Connexin43, BMMs were divided into the control group (M-CSF+RANKL) and the LPS group (M-CSF+RANKL+100 ng/mL LPS); and the control group (M-CSF+RANKL), 50 ng/mL LPS group (M-CSF+RANKL+50 ng/mL LPS), and 100 ng/mL LPS group (M-CSF+RANKL+100 ng/mL LPS). The expressions of Connexin43 mRNA and protein were detected by Western blot and real-time fluorescent quantitative PCR, respectively. In order to investigate the effect of LPS on osteoclast bone resorption, BMMs were divided into M-CSF group, M-CSF+RANKL group, M-CSF+RANKL+50 ng/mL LPS group, and M-CSF+RANKL+100 ng/mL LPS group. Bone absorption test was used to detect the ratio of bone resorption area.ResultsThe flow cytometry test confirmed that the cultured cells were BMMs, and CCK-8 activity test proved that the 100 ng/mL LPS could promote the proliferation of BMMs, showing significant differences when compared with the 0, 200, 500, 1 000, and 2 000 ng/mL LPS (P<0.05). TRAP staining showed no osteoclast formation in M-CSF group. Compared with M-CSF+RANKL group, the osteoclasts in M-CSF+RANKL+50 ng/mL LPS group and M-CSF+RANKL+100 ng/mL LPS group were larger with more nuclei, while the osteoclasts in M-CSF+RANKL+100 ng/mL LPS group were more obvious, and the differences in the ratio of osteoclast area between groups were statistically significant (P<0.05). Western blot result showed that the relative expression of Connexin43 protein in LPS group was significantly higher than that in control group (P<0.05). Real-time fluorescent quantitative PCR showed that the relative expression of Connexin43 mRNA in control group, 50 ng/mL LPS group, and 100 ng/mL LPS group increased gradually, and the differences between groups were statistically significant (P<0.05). Bone resorption test showed that osteoclast bone resorption did not form in M-CSF group, but the ratio of bone resorption area increased gradually in M-CSF+RANKL group, M-CSF+RANKL+50 ng/mL LPS group, and M-CSF+RANKL+100 ng/mL LPS group, and the differences between groups were statistically significant (P<0.05).ConclusionLPS at concentration of 100 ng/mL can promote the expression of Connexin43, resulting in increased osteoclastogenesis and enhanced osteoclastic bone resorption.
Objective To investigate the ability of gene-loaded lipopolysaccharide-amine nanopolymersomes (LNPs) in inducing osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by in vitro gene transfection, where LNPs were used as a non-viral cationic carrier, and their properties were optimized during synthesis. Methods LNPs were synthesized by a graft-copolymerization method, and the effects of different pH environments during synthesis on physicochemical properties of LNPs and LNPs/plasmid of bone morphogenetic protein 2-green fluorescent protein (pBMP-2-GFP) complexes were explored. Then, optimized LNPs with maximum transfection efficiency and safe cytotoxicity in rat BMSCs were identified by cytotoxicity and transfection experiments in vitro. Thereafter, the optimized LNPs were used to mediate pBMP-2-GFP to transfect rat BMSCs, and the influences of LNPs/pBMP-2-GFP on osteogenic differentiation of BMSCs were evaluated by monitoring the cell morphology, concentration of BMP-2 protein, activity of alkaline phosphatase (ALP), and the formation of calcium nodules. Results The nitrogen content, particle size, and zeta potential of LNPs synthesized at pH 8.5 were lower than those of the other pH groups, with the lowest cytotoxicity (96.5%±1.4%) and the highest transfection efficiency (98.8%±0.1%). After transfection treatment, within the first 4 days, BMSCs treated by LNPs/pBMP-2-GFP expressed BMP-2 protein significantly higher than that treated by Lipofectamine2000 (Lipo)/pBMP-2-GFP, polyethylenimine 25K/pBMP-2-GFP, and the blank (non-treated). At 14 days after transfection, ALP activity in BMSCs treated by LNPs/pBMP-2-GFP was higher than that treated by Lipo/pBMP-2-GFP and the blank, comparable to that induced by osteogenic medium; with alizarin red staining, visible calcium nodules were found in BMSCs treated by LNPs/pBMP-2-GFP or osteogenic medium, but absent in BMSCs treated by Lipo/pBMP-2-GFP or the blank with apoptosis. At 21 days after transfection, transparent massive nodules were discovered in BMSCs treated by LNPs/pBMP-2-GFP, and BMSCs exhibited the morphologic features of osteoblasts. Conclusion LNPs synthesized at pH 8.5 has optimal transfection efficiency and cytotoxicity, they can efficiently mediate pBMP-2-GFP to transfect BMSCs, and successfully induce their directional osteogenic differentiation, whose inducing effect is comparable to the osteogenic medium. The results suggest that gene transfection mediated by LNPs may be a convenient and effective strategy in inducing directional differentiation of stem cells.
ObjectiveTo investigate whether the miR-33s negatively regulates LPS-induced production of inflammatory cytokines by targeting p38 MAPK. MethodsHuman monocytes THP-1 cells were cultured in vitro and transfected with miR-33s mimic (25 nmol/L) or miR-33s inhibitor (25 nmol/L)by TransIT-X2? Dynamic Delivery System for 24 h. Then the transfected THP-1 cells were stimulated by LPS of 10.0 ng/mL for 24 h. The expression of miR-33s and p38 MAPK protein were measured by semi-quantitative RT-PCR. The concentrations of TNF-α,IL-6 and IL-1β in the cultured supernatant were assessed by ELISA. ResultsThe transfection of miR-33s mimic significantly increased the release of TNF-α,IL-6 and IL-1β(P<0.05). The expression of p38 MAPK protein was also significantly reduced(P<0.05). However,the pre-treatment of miR-33s inhibitor reversed the LPS-induced release of TNF-α,IL-6,and IL-1β,and the expression of p38 MAPK protein of THP-1 cells. ConclusionmiR-33s may play an important role in the regulation in inflammatory factors released from THP-1 cells by targeting p38 MAPK.
Objective To explore whether microRNA-203 (miR-203) targets and regulates the Toll-like receptor 4 (TLR4)/nuclear transcription factor kappa B (NF-κB)/nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) to protect alveolar epithelial cells from lipopolysaccharide (LPS)-induced apoptosis and inflammation injury. Methods The alveolar epithelial A549 cells were used as the research objects and divided into: Control group (normal culture), LPS group (LPS treatment), LPS+miR-NC mimics group (LPS treatment after transfection of miR-NC mimics), LPS+ miR-203 mimics group (LPS treatment after transfection of miR-203 mimics), LPS+miR-203 mimics+pcDNA group (LPS treatment after transfection of miR-203 mimics and pcDNA), LPS+miR-203 mimics+pcDNA-TLR4 group (LPS treatment after transfection of miR-203 mimics and pcDNA-TLR4). Dual luciferase reporter gene was used to detect the targeting relationship between miR-203 and TLR4; Real-time quantitative reverse transcription-polymerase chain reaction was used to detect the relative expression levels of miR-203 and TLR4 mRNA; enzyme-linked immunosorbent assay was used to measure the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6; flow cytometry was used to detect the apoptosis rate of A549 cells; Western blot was used to detect the expression of B-cell lymphoma/leukemia-2 gene (Bcl-2) and Bcl-2 associated X protein (Bax), TLR4, NF-κB and NLRP3 proteins in A549 cells. Results There was a targeted regulation relationship between miR-203 and TLR4. Compared with the Control group, the expression of miR-203, TLR4 mRNA and protein, Bax, NF-κB, and NLRP3 proteins in A549 cells in the LPS group increased, the levels of TNF-α, IL-1β and IL-6 in the cell supernatant increased, the apoptosis rate increased, the level of Bcl-2 protein in cells decreased (P<0.05). Compared with the LPS+miR-NC mimics group, the expression of TLR4 mRNA and protein, Bax, NF-κB, and NLRP3 proteins in A549 cells in the LPS+miR-203 mimics group decreased, the levels of TNF-α, IL-1β and IL-6 in the cell supernatant decreased, the apoptosis rate decreased, the expression level of miR-203 and the level of Bcl-2 protein in cells increased (P<0.05). Compared with the LPS+miR-203 mimics+pcDNA group, the expression of miR-203, TLR4 mRNA and protein, Bax, NF-κB, and NLRP3 proteins in A549 cells in the LPS+miR-203 mimics+pcDNA-TLR4 group increased, the levels of TNF-α, IL-1β and IL-6 in the cell supernatant increased, the apoptosis rate increased, the expression level of miR-203 and the level of Bcl-2 protein in cells decreased (P<0.05). Conclusion MiR-203 can target TLR4/NF-κB/NLRP3 to protect alveolar epithelial cells from apoptosis and inflammation induced by LPS.
Objective To explore the protective effects of liver X receptor-αactivator ( LXRα)T0901317 on rats with acute lung injury ( ALI) . Methods Seventy-two male Wistar rats were randomly divided into three goups, ie. a control group, a LPS group, and a T0901317 group. Artery blood gas analysis,lung tissue wet/dry weight ratio,myeloperoxidase activity, and lung histopathological changes were measured.The expressions of LXRαand TNF-αmRNA in lung tissue were detected by RT-PCR. The protein levels ofTNF-αand LXRαwere examined with ELISA and immunohistochemistry, respectively. Results In the ALI rats, PaO2 decreased, lung W/D weight ratio and myeloperoxidase activity increased significantly compared with the control group ( P lt; 0. 05) . Histopathological examination also revealed obvious lung injury. In theLPS group, the expression of TNF-αmRNA in lung tissue and the level of TNF-αprotein in lung homogenate and serum increased markedly( all P lt; 0. 05) while the expression of LXR-αmRNA declined significantly ( P lt; 0. 05) . Immunohistochemical staining showed that lung tissues of the normal rats expressed LXRαsignificantly but in the LPS group the expression of TNF-αand LXR-αin lung tissue decreased markedly ( P lt;0. 05) . After the treatment with T0901317, the expressions of LXR-αin lung tissues were significantly higher than those in the LPS group both at the mRNA and the protein level ( P lt; 0. 05) . Conclusion T0901317 plays an anti-inflammatory effect through up-regulating the expression of LXR-αand suppressing the expression of TNF-α, thus reduces the infiltration and aggregation of inflammatory cells in lung tissue.
ObjectiveTo investigate the effect of curcumin on the expression regulation of endogenousβ-glucoronidase (β-GD) induced by lipopolysaccharide (LPS).Methods① Human normal intrahepatic biliary epithelial cell line (HiBEpiC) cells in the logarithmic growth phase were divided into blank control group (0 h group) and 7 different stimulation time groups. The cell density was adjusted to 1×104/mL, and the cells were stimulated with 100 mg/mL LPS for 1, 3, 6, 18, and 24 hours respectively, including another two groups where the cells were cultured with LPS-free medium for 18 and 24 hours after LPS stimulation for 24 h. ② HiBEpiC cells in the logarithmic growth phase were divided into blank control group, LPS+low, medium, and high concentration curcumin group. The cell density was adjusted to 1×104/mL. In the blank control group, cells were not stimulated with any reagent; in the LPS group, cells were stimulated with 100 mg/mL LPS, in the other three groups, the cells were stimulated with 100 mg/mL LPS and simultaneously 20, 40, and 80 μmol/L curcumin, respectively, for 24 hours. The expressions of c-myc and endogenous β-GD were detected by Western blot method.Results① The expressions of endogenous β-GD and c-myc in HiBEpiC cells gradually increased with the prolongation of treatment time by LPS, and the expression levels of β-GD and c-myc at each time point group were significantly different from those in the 0 h group (P<0.05). ② There were significant difference between any two groups of the blank control group, LPS group, LPS+low concentration of curcumin group, LPS+medium concentration of curcumin group, and LPS+high concentration of curcumin group (P<0.05).ConclusionCurcumin is able to inhibit the increased expression of endogenous β-GD induced by LPS, possibly via inhibiting expression of c-myc.
Objective To investigate the effects of cytokines on the expression of syndecan-1 in cultured human retinal pigment epithelial (RPE) cells and the signal transduction pathway. Methods Reverse transcription polymerase chain reaction and immunofluorescence staining were used to detect the expression of syndecan-1 mRNA and protein in normal RPE cells. The expression of syndecan-1 in RPE cells stimulated by different cytokines was detected and quantitatively analyzed by image process of immunofluorescence. The stimulation included 7 and 35 ng/ml tumor necrosis factor (TNF)-alpha; for 24 hours, 1 and 6 mu;g/ml lipopolysaccharide (LPS) for 11 hours, 7 ng/ml TNF-alpha; for 0 to 24 hours (once per 2 hours, and 13 times in total), and 30% supernatant of monocyte/macrophage strain (THP-1 cells) for 3, 14 and 43 hours. The effect of 30% supernatant of THP-1 cells was assayed after pretreated by PD098059[the specific inhibitor of extracellular signal regulated kinase(ERK) 1/2]for 2 hours. After exposed to 30% supernatant of THP-1 cells for 3 hours and treated by 0.25% trypsin for 5 minutes, RPE cells attaching was evaluated by methyl thiazolyl tetrazolium assay. Results In normal human RPE cells, expressions of syndecan-1 mRNA and protein were detected, and b syndecan-1 positive yellowish green fluorescence was found in the cell membrane and cytoplasm while light green fluorescence was in the nucleus. As the concentration and stimulated time of TNF-alpha; or LPS increased, the fluorescence intensity decreased(Plt;0.01), and after exposed to 30% supernatant of THP-1 cells, weaker fluorescence intensity was detected (Plt;0.001). Pretreatment with 50 mu;mol/L PD098059 for 2 hours partly inhibited the effect of THP-1 cells supernatant. After exposed to 30% supernatant of THP-1 cells for 3 hours, the number of attached cells decreased compared with the controls(Plt;0.05). Conclusions TNF-alpha; and LPS down-regulate the expression of syndecan-1 in cultured human RPE cells. The supernatant of THP-1 cells down-regulates the expression of syndecan-1 and lessens the cells attaching, which is at least mediated by ERK 1/2 pathway. (Chin J Ocul Fundus Dis, 2006, 22: 113-116)
Objective To analyze the role of lienal polypeptide injection in acute lung injury induced by lipopolysaccharide (LPS) in rats. Methods Eighty male SD rats were randomly allocated into 4 groups: a LPS group, a control group, a lienal polypeptide group and a LPS+ lienal polypeptide group (20 rats in each group). Lienal polypeptide or normal saline was given with an intramuscular injection 30 min after an intraperitoneal injection of LPS (5 mg/kg). The severity of pulmonary injury was evaluated 4 h after LPS challenge by enzyme-linked immunosorbent assay (ELISA), wet-to-dry weight ratio, hematoxylin and eosin (HE) staining, TUNEL and Western blotting. Results Lienal polypeptide injection treatment significantly attenuated LPS-induced pulmonary histopathologic changes, alveolar hemorrhage, and neutrophil infiltration. Moreover lienal polypeptide injection significantly suppressed LPS-induced activation of metastasis-associated protein-1 (MTA1). Conclusion Lienal polypeptide injection is demonstrated to protect rats from LPS-induced acute lung injury by the expression of MTA1.
ObjectiveTo investigate the role of the p38 MAPK signaling pathway in sTREM-1 expression of RAW264.7 cells induced by lipopolysaccharide (LPS). MethodsMacrophage cell line RAW264.7 cells were cultured in vitro and induced with the same concentration of LPS at different time. The protein expressions of p38 MAPK and phosphorylation of p38 MAPK(p-p38 MAPK) were detected by Western blot. The mRNA expression of p38 MAPK was detected by RT-PCR. The level of sTREM-1 was detected by enzyme linked immunosorbent assay method.The RAW264.7 cells were treated by SB203580 at different concentration,the changes of above indexes were observed. ResultsThe p-p38 MAPK and p38 MAPK mRNA could be inducted by LPS in a time-dependent manner. The p-p38 MAPK and p38 MAPK mRNA could be inhibited by SB203580. After SB203580 blocking p38 MAPK signal transduction pathway,the sTREM-1 expression was significantly inhibited in a dose dependent manner. ConclusionLPS can induce sTREM-1 expression in RAW264.7 cells by activating the p38 MAPK signaling pathway.
Objective To investigate the transduction pathway of TREM-1 during endotoxininduced acute lung injury ( ALI) in mice through the specific activating or blocking TREM-1.Methods 40 mice were randomly divided into a saline control group, an ALI group, an antibody group, and a LP17 group ( 3.5 mg/kg) . All mice except the control group were intraperitoneally injected with lipopolysaccharide ( LPS) to establish mouse model of ALI. Two hours after LPS injection, anti-TREM-1mAb ( 250 μg/kg) was intraperitoneally injected in the antibody group to activation TREM-1, and synthetic peptide LP17 was injected via tail vein in the LP17 group to blocking TREM-1. After 6,12,24, 48 hours, 3 mice in each group were sacrificed for sampling. The expression of NF-κB in lung tissue was determined by immunohistochemistry. The levels of TNF-α, IL-10, TREM-1, and soluble TREM-1 ( sTREM-1) in lung tissue and serumwere measured by ELISA. Pathology changes of lung were observed under light microscope, and Smith’s score of pathology was compared. Results Administration of anti-TREM-1mAb after ALI modeling significantly increased the NF-κB expression in lung tissue at 48h, resulting in a large number of pro-inflammatory cytokines releasing in the lung tissue and serumand lung pathology Smith score increasing. Administration of LP17 after modeling significantly down-regulated the expressions of NF-κB and pro-inflammatory cytokines, while led to a slight increase of anti-inflammatory cytokines and a decline of lung pathology Smith’s score.Conclusion TREM-1 may involve in inflammatory response by promoting the generation of inflammatory factors via NF-κB pathway, thus lead to lung pathological changes in ALI.