Objective The bone marrow mesenchymal stem cells (BMSCs) have the capacity to differentiate into insul in-producing cells (IPCs) in vitro. However, low differentiation efficiency and poor maturity are the main obstacles. To investigate the feasibil ity of BMSCs differentiation into IPCs in diabetic pancreatic microenvironment of pigs. Methods BMSCs were isolated and purified from the bone marrow of a 4-week-old male pig. Fifteen female pigs (aged 8 to 10 weeks, weighing 8 to 10 kg) were randomly divided into 3 groups: normal control group (group A, n=5), diabetic control group (group B, n=5), and BMSCs transplanted group (group C, n=5). The pigs of groups B and C were treated by auris vein injections of styeptozocin and alloxan for 3 days to induce diabetes mell itus (DM) model, whose blood glucose level 2 days all greater than 17 mmol/L was successful DM model. A total of 1.1 mL of the 3rd passage BMSCs labeled with enhanced green fluorescent protein (EGFP), with cell density of 5 × 107/ mL, were injected into subcapsular pancreas of group C at multi ple points, normal saline at the same dosage into those of groups A and B. After 30 days of monitoring blood glucose, the histological analysis of islet number and size were done; the immunofluorescence staining was used to detect the protein expression of insul in in the new-formed islets. The EGFP+ cells were collected from the sections using laser-capture microdissection; RT-PCR was used to detect insulin mRNA and pancreatic and duodenal homeobox factor 1 (PDX1) mRNA expressions from EGFP+ cells, and the insul in and sexdetermining region of the Y chromosome (SRY) genes were detected by fluorescence in situ hybridization (FISH). Results The blood glucose level decreased significantly in group C when compared with that in group B from 18 days and gradually decreased with time (P lt; 0.05). The histological observation showed that the number of islets was increased significantly in group C when compared with that in group B (10.9 ± 2.2 vs. 4.6 ± 1.4, P lt; 0.05), and there was no significant difference when compared with that in group A (10.9 ± 2.2 vs.12.6 ± 2.6, P gt; 0.05). The size of new-formed islets in group C was significantly smaller than that in group A [(47.2 ± 19.6) μm vs. (119.6 ± 27.7) μm, P lt; 0.05]. The immunofluorescence staining showed that new-formed islets of group C expressed insulin protein. RT-PCR showed that the microdissected EGFP+ cells of group C expressed insulin mRNA and PDX-1 mRNA. FISH showed that the new-formed islet cells of group C contained SRY gene in Y chromosome and insulin double positive cells. Conclusion BMSCs can differentiate into IPCs in diabetic pancreatic microenvironment of pigs.
Objective To review the research progress of osteoblasts in the hematopoietic microenvironment of bone marrow and regulatory pathways and mechanisms. Methods The advances in the osteoblasts as crucial components for hematopoietic microenvironment in bone marrow, regulation to osteoblasts and hematopoietic stem cells(HSCs), and correlative singal pathways and mechanisms were introduced based on the recent related literature. Results Evidence indicates that osteoblasts are crucial components of the hematopoietic microenvironments in adult bone marrow. The osteoblasts maintainthe quiescence of primitive HSCs by the signaling receptorsligands, secreted cell factors and celladhesion molecules and by regulating other cells in the niche. The quiescent primitive HSCs persist stem cell characteristic which has unlimited selfrenewal and multipotent differentiation potential. Conclusion The further understanding of the relationship between osteoblasts and hematopoietic microenvironment should lead to development of new strategies directed toward clinical therapeutics of HSCs transplantation.
Unhealthy diet, habits and drug abuse cause a variety of liver diseases, including steatohepatitis, liver fibrosis, liver cirrhosis and liver cancer, which seriously affect human health. The fabrication of highly simulated cell models in vitro is important in the treatment of liver diseases and drug development. This article summarized the common strategies for the construction of liver pathology models in vitro. It introduced four typical cell models in vitro related to liver disease and provided a reference for the study of liver disease models.
Abstract To study the regulation of growth and proliferation of tissue-repair cell from wound microenvironment, the effects of wound fluid (WF) on the growth and proliferation of wound fibroblast were studied in vitro. Thirty rats were divided into 6 groups. On the back of every rat, an incision of 0.5~1.0cm was performed a subcutaneous sac was made by blunt dissection. A piece of sponge was put in, and the wound was sutured. After 1,3,7,9,11,15 days, one group of the rats were sacrificed respectively, and WF was collected from the sponge. Two kinds of medium were made with each WF: 1640+1%FCS+10%WF and1640+10%FCS+10%WF. After 48 hours incubation with newly prepared wound fibroblasts, the growth of the cells was observed. It was shown that (1) Under 1%FCS, WFfrom1,3,7 days stimulated cell proliferation, and WF from 9,11,15 days caused cell death. (2) Under 10%FCS, WF from 9,11,15 days inhibited cell growth. It was suggested that the wound microenvironment stimulated the fibroblasts to proliferate for one week after injury, and beyond that further growth seemed to be arrested, and that there might be some growth inhibitory factors present in the microenvironmentduring the late stage of wound healing.
ObjectiveTo summarizes the mechanisms of carcinogenesis of colorectal cells, the occurrence and development of cancer cells, and their interactions with the tumor niche of colorectal cancer (CRC) from the perspective of the tumor niche, exploring new ideas for the prevention, diagnosis, and treatment of CRC. MethodThe relevant literature at home and abroad in recent years on the researches of mechanism of the occurrence and development of CRC and its relation with the tumor niche of CRC was searched and reviewed. ResultsThe theory of tumor ecology indicates that the human normal body can be regarded as a relatively closed and perfect ecosystem. Each normal tissue and organ within the body represent a niche in this ecosystem, which interact, affect, and symbiotically coexist with each other, forming a dynamic ecological balance. Tumor cells, being a “new species” distinct from normal tissue cells, “invade” the ecological system of the normal body under specific conditions and interact with the surrounding microenvironment, which is defined as the tumor niche. Analysis of current literature retrieved from the perspective of the tumor niche suggested that, although genetic factors are involved in the carcinogenesis of colorectal cells, the majority of such carcinogenesis stems from the continuous stimulation of the colorectal niche. Current research primarily focuses on the conclusion that the carcinogenesis of colorectal cells is associated with factors such as chronic inflammatory response, intestinal microorganisms, oxidative stress, and pyroptosis. After carcinogenesis and the eventual formation of CRC, the growth of cancer cells and tissues first requires breaching the defense of the immune system in the colorectal niche. Immune cells in the immune system play a crucial role in the tumor niche during the occurrence and development of CRC. ConclusionsThe proposal of the tumor niche concept enables researchers, when studying the mechanisms of tumor occurrence and development, to no longer merely focus on the tumor and its microenvironment. Instead, the tumor as a part of the body’s ecosystem was studied. Components of the tumor niche, such as chronic inflammatory responses, intestinal microorganisms, oxidative stress, pyroptosis, and immune system, have a significant impact on the mechanisms of carcinogenesis of most colorectal cells, as well as the occurrence and development of cancer cells. These factors influence the progression of CRC in various aspects.
ObjectiveTo investigate the effects of hypoxic three-dimensional culture microenvironment on the proliferation of bone marrow mesenchymal stem cells and its mechanism. MethodsP5 generation mouse bone marrow mesenchymal stem cells and P (3HB-co-4HB) were co-cultured under normoxic three-dimensional (20%) and hypoxic three-dimensional microenvironment (4%) respectively. After 24 hours, the proliferation of the two groups was determined by CCK-8 method. The expression of HIF-1α gene was detected by real-time quantitative PCR after 12 hours. Western blotting was used to detect the expression of HIF-1α protein after 24 hours. ResultsAfter 24 hours, the CCK-8 method showed that the OD value of the hypoxia group was significantly higher than that of the normoxia group (0.455±0.027 vs. 0.352±0.090, n=12, P<0.05). After 12 hours of hypoxic culture, the expression level of HIF-1α mRNA in the hypoxia group was significantly higher than that in the normoxia group (P<0.05). Compared with the normoxia group (0.47± 0.05), the relative expression level of HIF-1α protein in the hypoxia group (0.63±0.06) significantly increased in the Western blotting after 24 hours (n=3, P<0.05). ConclusionThe hypoxic three-dimensional microenvironment can promote the proliferation of bone marrow mesenchymal stem cells, which may be related to the activation of HIF-1α signaling pathway.
ObjectiveTo review the role of intestinal flora on the tumor microenvironment and the effect of both on the development of hepatocellular carcinoma (HCC), with a view to providing new ideas on the causes of HCC development and progression. MethodRelevant articles in the direction of intestinal flora and tumor microenvironment and HCC as well as the relationship between intestinal flora and tumor microenvironment in recent years were searched and summarized. ResultsThe tumor microenvironment played an important role in the occurrence, development and postoperative recurrence of HCC. The intestinal flora, as one of the important regulators of tumor microenvironment, could induce HCC by affecting the tumor microenvironment in addition to interacting with the liver through the gut-liver axis. ConclusionIntestinal flora can influence to HCC by regulating the tumor microenvironment, and its specific mechanism of action still needs to be further investigated, which can be a new direction for HCC research.
Objective To explorer the survival time of autogeneic BMSCs labeled by superparamagnetic iron oxide (SPIO) in rabbit intervertebral discs and the rule of migration so as to prove bases of gene therapy preventing intervertebral disc degeneration. Methods Twelve rabbits were used in this experiment, aged 8-10 weeks, weighing 1.5-2.0 kg and neglecting their gender. BMSCs were separated from rabbits bone marrow by density gradient centrifugation and cultivated, and the 3rd generation of BMSCs were harvested and labeled with SPIO, which was mixed with poly-l-lysine. The label ing efficiency was evaluated by Prussian blue staining and transmission electron microscope. Trypanblau stain and MTT were performed to calculate the cell’ s activity. Rabbits were randomly divided into experimental group (n=8) and control group (n=4), the labeled BMSCs and non-labeled BMSCs (5 × 105/mL) were injected into their own intervertebral discs (L1,2, L2,3, L3,4 and L4,5), respectively. At 2, 4, 6 and 8 weeks, the discs were treated with Perl’s fluid to observe cell survival and distribution. Results The label ing efficiency of BMSCs with SPIO was 95.65% ± 1.06%, the cell activity was 98.28% ± 0.85%. There was no statistically significant difference in cell prol iferation within 7 days between non-labeled and labeled cells (P gt; 0.05). After 8 weeks of operation, the injected cells was al ive. ConclusionLabeled BMSCs with SPIO is feasible in vitro and in vivo, and the cells can survive more than 8 weeks in rabbit discs.
ObjectiveTo review cancer associated fibroblasts(CAFs) and its role in the evolution of gastrointestinal neoplasms. MethodDomestic and international publications in relation to CAFs and its role in the evolution of gastrointestinal neoplasms were collected and reviewed. ResultsIn the gastrointestinal cancers, as the largest number and the most important stromal cells of the tumor microenvironment, CAFs induce the homeostasis of cell microenviron-ment out of balance, promote the remodeling of the tumor metabolism and extracellular matrix(ECM), and thus impulse the generation, proliferation, invasion and metastasis of the tumor by secreting different kinds of cytokines. ConclusionsThe key role CAFs playing in the tumor generation and evolution makes themselves and the multiple relatively specific molecules they secrete a new target for prognosis and targeted therapy, and this gives us a new idea for the combined treatment of gastrointestinal tumor or any other tumors.
ObjectiveTo explore the changes of cytokines in the tumor microenvironment of colorectal cancer and the relationship between the expression of CD16a mRNA and cytokines in the microenvironment.MethodsRT-PCR and flow cytometry microsphere array (CBA) were used to detect the expressions of CD16a mRNA, as well as cytokines of Th1 [interleukin (IL)-2, IL-12, and interferone-γ (IFN-γ)], Th2 (IL-4, IL-6, and IL-10), tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor (VEGF) in the tumor and the adjacent tissues of 42 patients with colorectal cancer, respectively, and the correlation between the expression of CD16a mRNA and cytokines in the microenvironment was analyzed.ResultsThe expressions of IL-6, TNF-α, and VEGF in colorectal cancer tissues were significantly higher than those in the adjacent tissues (P<0.05). There was no significant difference in the expression of IL-2,IL-4, IL-10, IL-12, and IFN-γ between the two kinds of tissues (P>0.05). Clinicopathological factor analysis showed that, the levels of IL-6 and VEGF in the colorectal cancer patients with preoperative normal CEA were significantly higher than those with elevated CEA (P<0.05). Correlation analysis showed that the expression of IL-6 was negatively correlated with expression of CD16a mRNA (P<0.05).ConclusionsThe expressions of IL-6, TNF-α, and VEGF in tumor tissues were significantly higher than adjacent tissues, and the effect of angiogenic and immunosuppression were enhanced. The expression of CD16a mRNA in the microenvironment of colorectal cancer tumor is negatively correlated with the expression of IL-6.