ObjectiveTo evaluate the combination of lipopolysaccharide-amine nanopolymersomes (LNPs), as a gene vector, with target gene and the transfection in bone marrow mesenchymal stem cells (BMSCs) so as to provide a preliminary experiment basis for combination treatment of bone defect with gene therapy mediated by LNPs and stem cells. MethodsPlasmid of bone morphogenetic protein 2 (pBMP-2)-loaded LNPs (pLNPs) were prepared. The binding ability of pLNPs to pBMP-2 was evaluated by a gel retardation experiment with different ratios of nitrogen to phosphorus elements (N/P). The morphology of pLNPs (N/P=60) was observed under transmission electron microscope (TEM) and atomic force microscope (AFM). The size and Zeta potential were measured by dynamic light scattering (DLS). The resistance of pLNPs against DNase I degradation over time was explored. The viability of BMSCs, transfection efficiency, and expression of target protein were investigated after transfection by pLNPs in vitro. ResultsAt N/P≥1.5, pLNPs could completely retard pBMP-2; at N/P of 60, pLNPs was uniform vesicular shape under AFM; TEM observation demonstrated that pLNPs were spherical nano-vesicles with the diameter of (72.07±11.03) nm, DLS observation showed that the size of pLNPs was (123±6) nm and Zeta potential was 20 mV; pLNPs could completely resist DNase I degradation within 4 hours, and such protection capacity to pBMP-2 decreased slightly at 6 hours. The cell survival rate first increased and then decreased with the increase of N/P, and reached the maximum value at N/P of 45; the cytotoxicity was in grade I at N/P≤90, which meant no toxicity for in vivo experiment. While the transfection efficiency of pLNPs increased with the increase of N/P, and reached the maximum value at N/P of 60. So it is comprehensively determined that the best N/P was 60. At 4 days, transfected BMSCs expressed BMP-2 continuously at a relatively high level at N/P of 60. ConclusionLNPs can compress pBMP-2 effectively to form the nanovesicles complex, which protects the target gene against enzymolysis. LNPs has higher transfection efficiency and produces more amount of protein than polyethylenimine 25k and Lipofectamine 2000.
Objective To explore the in vitro osteogenesis of the chitosan-gelatin scaffold compounded with recombinant human bone morphogenetic protein 2 (rhBMP-2). Methods Recombinant human BMP-2 was compounded with chitosan-gelatin scaffolds by freezedrying. 2T3 mouse osteoblasts and C2C12 mouse myoblasts were cultured and seeded onto the complexes at thedensity of 2×104/ml respectively. The complexes were divided into two groups. Group A: 2T3 osteoblasts seeded, consisted of 14 rhBMP-2 modified complexes. Each time three scaffolds were taken on the 3rd, 7th, 14th, and 21st day of the culturing, then the expression of osteocalcin gene (as the marker of bone formation) in adherent cells was detected by semiquantitative RT-PCR with housekeeping gene β-tubulin as internalstandard. The other 2 rhBMP-2 modified complexes were stopped being cultured on 14th day after cell seeding, and the calcification of the complexes was detected by Alizarian Red S staining. Five scaffolds without rhBMP-2 modification as the control group A, they were stopped being cultured on 14th day after cell seeding. Of the 5 scaffolds, 3 were subjected tothe detection of osteocalcin gene expression and 2 were subjected to the detection of calcification. Group B: C2C12 myoblasts seeded, had equal composition andwas treated with the same as group A. Besides these 2 groups, another 2 rhBMP2 modified complexes with 2T3 osteoblasts seeding were cultured for 3 days and then scanned by electron microscope (SEM) as to detect the compatibility of the cell to the complex. ResultsSEM showed that cells attached closely to the complex and grew well. In group A, the expression level(1.28±0.17)of osteocalcin gene in cells on rhBMP-2 modified complexes was higher than that (0.56±0.09) of the control group A, being statistically -significantly different(P<0.05) control. C2C12 myoblasts which did not express osteocalcin normally could also express osteocalcin after being stimulated by rhBMP-2 for at least 7 days. Alizarian Red S staining showed that there was more calcification on rhBMP-2 modified complexes in both groups. There were more calcification in the group compounded with rhBMP-2, when the groups were seeded with the same cells. Conclusion The complexmade of rhBMP-2 and chitosan-gelatin scaffolds has b osteogenesis ability in vitro.
Objective To investigate bone regeneration of the cell-biomaterial complex using strategies of tissue engineering based on cells.Methods Hydroxyapatite/collagen (HAC) sandwich composite was produced to mimic the natural extracellular matrix of bone, with type Ⅰ collagen servingas a template for apatite formation. A three-dimensional ploy-porous scaffoldwas developed by mixing HAC with poly(L-lactic acid) (PLA) using a thermally induced phase separation technique (TIPS). The rabbit periosteal cells were treated with 500 ng/ml of recombinant human bone morphogenetic protein 2(rhBMP-2), followed by seeded into pre-wet HAC-PLA scaffolds. Eighteen 3-month nude mice were implanted subcutaneously cell suspension (groupA, n=6), simple HAC-PLA scaffold (group B, n=6) and cell-biomaterial complex(group C, n=6) respectively.Results Using type Icollagen to template mineralization of calcium and phosphate in solution, we get HAC sandwich composite, mimicking the natural bone both in compositionand microstructure. The three dimensional HAC-PLA scaffold synthesized by TIPShad high porosity up to 90%, with pore size ranging from 50 μm to 300 μm. SEMexamination proved that the scaffold supported the adhesion and proliferation of the periosteal cells. Histology results showed new bone formation 8 weeks after implantation in group C. The surface of group A was smooth without neoplasma. Fibrous tissueinvasion occured in group B and no bone and cartilage formations were observed.Conclusion The constructed tissue engineering bone has emerged as another promising alternative for bone repair.
Objective To investigate the possibility of differentiation of theisolated and cultured adipose-derived adult stem cells into chondrocytes, which is induced by the recombinant human bone morphogenetic protein 2 (rhBMP-2). Methods The rabbit adipose tissue was minced and digested by collagenase Type Ⅰ. The adposederived adult stem cells were obtained and then they were cultured inthe micropellet condition respectively in the rhBMP-2 group, the rhTGF-β1 group, the combination group, and the control group for 14 days. The differentiation of the adiposederived stem cells into chondrocytes was identifiedby the histological methods including HE, Alcian blue, Von kossa, and immunohistochemical stainings. Results After the continuous induction by rhBMP-2 and continuous culture for 14 days, the HE staining revealed a formation of the cartilage lacuna; Alcian blue indicated that proteoglycan existed in the extracellular matrix; the immunohistochemical staining indicated that collagen Ⅱ was in the cellular matrix; and Von kossa indicated that the adipose-derived stem cells couldnot differentiate into the osteoblasts by an induction of rhBMP-2. Conclusion In the micropellet condition, the adipose-derived adult stemcells can differentiate into the chondrocytes, which is initially induced by rhBMP-2. This differentiation can provide a foundation for the repair of the cartilage injury.
ObjectiveTo study the ectopic osteogenesis and biocompatibility of bone morphogenetic protein 2 (BMP-2)-derived peptide P24 loaded chitosan-4-thio-butylamidine (CS-TBA) hydrogel.MethodsFirst, the CS-TBA/hydroxyapatite (HA) solution was prepared by using chitosan, 2-iminothiolane hydrochloride, and HA. Then, the different amount of P24 peptides were added to the CS-TBA/HA to prepare the CS-TBA/5%P24/HA and CS-TBA/10%P24/HA solutions. Finally, β-glycerophosphate disodium (β-GP) was added to the CS-TBA/HA, CS-TBA/5%P24/HA, and CS-TBA/10%P24/HA to prepare the CS-TBA/HA/β-GP, CS-TBA/5%P24/HA/β-GP, and CS-TBA/10%P24/HA/β-GP hydrogels, respectively. Eighteen Sprague Dawley female rats were randomly divided into 3 groups (n=6), which were injected into the back muscle pouches with equal volume CS-TBA/HA/β-GP hydrogel (group A), CS-TBA/5%P24/HA/β-GP hydrogel (group B), and CS-TBA/10%P24/HA/β-GP hydrogel (group C). The animals were sacrificed at 4 and 8 weeks and conducted micro-CT. The ability of biodegradation and osteogenesis of hydrogl was detected by trabecular thickness (Tb.Th), trabecular number (Tb.N), bone mineral density (BMD), and histological staining (HE and Masson).ResultsAll the rats survived to the time point of the harvest. Micro-CT results showed that the new bones gradually increased in each group after operation. At the same time, the new bone formation was more obvious in groups B and C than in group A, and with the increase of P24 concentration, new bone formation in group C was much more than that in group B. The Tb.Th, Tb.N, and BMD increased gradually in 3 groups, and the differences between 4 and 8 weeks were significant (P<0.05) except the Tb.Th in group A. At different time points, the Tb.Th, Tb.N, and BMD were significantly higher in groups B and C than in group A (P<0.05), and in group C was higher than in group B (P<0.05), showing significant differences between groups. Histological staining showed that the materials of groups B and C were biodegradable, and the osteogenic effect was increased with the increase of P24 concentration.ConclusionP24 peptide can improve the ectopic osteogenesis of CS-TBA hydrogel, and the 10% concentration is more effective.
ObjectiveTo investigate the effect of micro RNA (miR)-335-5p regulating bone morphogenetic protein 2 (BMP-2) on the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs).MethodshBMSCs were cultured in vitro and randomly divided into control group (group A), miR-335-5p mimics group (group B), miR-335-5p mimics negative control group (group C), miR-335-5p inhibitor group (group D), and miR-335-5p inhibitor negative control group (group E). After grouping treatment and induction of osteogenic differentiation, the osteogenic differentiation of cells in each group was detected by alkaline phosphatase (ALP) and alizarin red staining; the expressions of miR-335-5p and BMP-2, Runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteocalcin (OCN) mRNAs were detected by real-time fluorescence quantitative PCR analysis; the expressions of Runx2, OPN, OCN, and BMP-2 proteins were detected by Western blot.ResultsCompared with group A, the relative proportion of ALP positive cells and the relative content of mineralized nodules, the relative expressions of BMP-2, miR-335-5p, OPN, OCN, Runx2 mRNAs, the relative expressions of Runx2, OPN, OCN, and BMP-2 proteins in group B were significantly increased (P<0.05); the above indexes in group D were significantly decreased (P<0.05); the above indexes between groups C, E and group A were not significantly different (P>0.05).ConclusionmiR-335-5p can up-regulate BMP-2 expression and promote osteogenic differentiation of hBMSCs.
Objective To evaluate the bone regenerative potential of reconbinant human bone morphogenetic protein 2(rhBMP-2) / collagen on adult rat calvarial bone. Methods A tight subperiosteal pocket was produced under both sides ofthe temporal muscle in rats. rhBMP-2 / collagen was implanted in one side and collagen alone was implanted in the other side as control. The rats were sacrificed 2, 4 and 8 weeks after operation. The specimen was harvested and examined histologically. For morphometric analysis, the thickness of the temporal bone of both sides was measured and compared. Results The rhBMP-2 / collagen onlay implant resulted in active bone formation and the augmented bone was connected directly with the original bone, whereas the collagen alone resulted in neither bone nor cartilage production. The ossification process in the rhBMP-2 / collagen occurred directly through bone formation, similar to intramembranous ossification. Conclusion rhBMP-2 / collagen is an effective material as a biological onlay implant.
ObjectiveTo construct bone morphogenetic protein 2 (BMP-2) gelatin/chitosan hydrogel sustained-release system, co-implant with induced pluripotent stem cells (iPS) derived mesenchymal stem cells (MSCs) to hydroxyapatite (HA)/zirconium dioxide (ZrO2) bio porous ceramic foam, co-culture in vitro, and to explore the effect of sustained-release system on osteogenic differentiation of iPS-MSCs.MethodsBMP-2 gelatin/chitosan hydrogel microspheres were prepared by water-in-oil solution. Drug encapsulation efficiency, drug loading, and in vitro sustained release rate of the microspheres were tested. HA/ZrO2 bio porous ceramic foam composite iPS-MSCs and BMP-2 gelatin/chitosan hydrogel sustained release system co-culture system was established as experimental group, and cell scaffold complex without BMP-2 composite gelatin/chitosan hydrogel sustained release system as control group. After 3, 7, 10, and 14 days of co-culture in the two groups, ALP secretion of cells was detected; gene expression levels of core binding factor alpha 1 (Cbfa1), collagen type Ⅰ, and Osterix (OSX) were detected by RT-PCR; the expression of collagen type Ⅰ was observed by immunohistochemical staining at 14 days of culture; and cell creep and adhesion were observed by scanning electron microscopy.ResultsBMP-2 gelatin/chitosan hydrogel sustained-release system had better drug encapsulation efficiency and drug loading, and could prolong the activity time of BMP-2. The secretion of ALP and the relative expression of Cbfa1, collagen type Ⅰ, and OSX genes in the experimental group were significantly higher than those in the control group at different time points in the in vitro co-culture system (P<0.05). Immunohistochemical staining showed that the amount of fluorescence in the experimental group was significantly more than that in the control group, i.e. the expression level of collagen type Ⅰ was higher than that in the control group. The cells could be more evenly distributed on the materials, and the cell morphology was good. Scanning electron microscopy showed that the sustained-release system could adhere to cells well.ConclusioniPS-MSCs have the ability of osteogenic differentiation, which is significantly enhanced by BMP-2 gelatin/chitosan hydrogel sustained-release system. The combination of iPS-MSCs and sustained-release system can adhere to the materials well, and the cell activity is better.
ObjectiveTo compare the effectiveness of calcium phosphate cement (CPC) loaded with recombinant human bone morphogenetic protein 2 (rhBMP-2) combined with CPC loaded with antibiotic versus CPC loaded with antibiotic alone in one stage for chronic osteomyelitis with bone defect.MethodsA single-blind prospective randomized controlled clinical trial was conducted. Between April 2018 and April 2019, 80 patients of chronic osteomyelitis with bone defect in accordance with the random number table were randomly divided into two groups, 40 in the trial group (CPC loaded with rhBMP-2 combined with CPC loaded with antibiotic) and 40 in the control group (CPC loaded with antibiotic). There was no significant difference in gender, age, disease duration, lesion, and preoperative white blood cells (WBC) count, platelet count, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) between the two groups (P>0.05). All patients were implanted the corresponding CPC and external fixator after lesion clearance in the two groups. The postoperative WBC count, platelet count, ESR, CRP, hospital stay, cure rate of osteomyelitis, repaired bone defect volume, the time of external fixator removal, and the time of full weight-bearing of the affected limb were compared between the two groups.ResultsAll patients were followed up 12-24 months, with an average of 18.4 months. There was no significant difference in WBC count, platelet count, ESR, and CRP between the two groups at 4 weeks after operation (P>0.05). There were significant differences in WBC count, platelet count, and CRP in the two groups between 1 week before operation and 4 weeks after operation (P<0.05). And the ESR showed no significant difference between pre- and post-operation in the two groups (P>0.05). In the trial group, the anaphylactic exudate occurred in 1 patient with tibial osteomyelitis and the incision healed after oral administration of loratadine. The incisions of other patients healed by first intention in the two groups. One case of distal tibial osteomyelitis recurred in each group, and 1 case of humeral osteomyelitis recurred in the control group. The cure rates of osteomyelitis were 97.5% (39/40) in the trial group and 95% (38/40) in the control group, showing no significant difference between the two groups (χ2=0.000, P=1.000). There was no significant difference in the repaired bone defect volume and hospital stay between the two groups (P>0.05). X-ray film and CT showed that the bone defects were repaired in the two groups. The time of external fixator removal and the time of full weight-bearing of the affected limb were significantly shorter in the trial group than in the control group (P<0.05).ConclusionApplication of CPC loaded with rhBMP-2 and antibiotic in one stage is effective for the chronic osteomyelitis with bone defect, which can accelerate the bone regeneration in situ to repair bone defect, reduce the trauma, shorten the course of treatment, and obtain good function of the affected limb.
Objective To study biological rule of recombinant human bone morphogenetic protein 2 (rhBMP-2) in regulating the expression of vascular endothelial growth factor (VEGF) of adipose-derived stem cells (ADSCs) at different induced concentrations and time points at gene level and protein level. Methods ADSCs were separated from adult human adipose tissues and cultured until passage 3. After ADSCs were induced by rhBMP-2 in concentrations of 0, 50, 100, and 200 ng/ mL respectively for 24 hours, and by 100 ng/mL rhBMP-2 for 3, 6, 12, 18, 24, 36, and 48 hours (ADSCs were not induced at corresponding time point as controls) respectively, the VEGF mRNA and protein expressions were detected by RT-PCR and ELISA. Results The VEGF mRNA and protein expressions induced by rhBMP-2 were concentration-dependent; the expressions were highest in a concentration of 100 ng/mL. The VEGF mRNA expression in concentrations of 50, 100, and 200 ng/mL were significantly higher than that in a concentration of 0 ng/mL (P lt; 0.05); and the expression in concentration of 100 ng/ mL was significantly higher than that in concentrations of 50 and 200 ng/mL (P lt; 0.05). The VEGF protein expression in a concentration of 100 ng/mL was significantly higher than that in the other concentrations (P lt; 0.05). The VEGF mRNA and protein expressions induced by rhBMP-2 were time-dependent. The VEGF mRNA and protein expressions at 3 and 6 hours after induction were significantly lower than those of non-induced ADSCs (P lt; 0.05); the expressions were lower at 12 hours after induction, showing no significant difference when compared with those of non-induced ADSCs (P gt; 0.05); the expressions reached peak at 18 and 24 hours after induction, and were significantly higher than those of non-induced ADSCs (P lt; 0.05); the expressions decreased in induced and non-induced ADSCs at 36 and 48 hours, showing no significant difference between induced and non-induced ADSCs (P gt; 0.05). Conclusion rhBMP-2 adjusts VEGF expression of ADSCs in a concentration- and time-dependent manner. The optimum inductive concentration of rhBMP-2 is 100 ng/mL, induced to 18-24 hours is a key period when rhBMP-2 is used to promote tissue engineering bone vascularization.