| 1. |
Chijimatsu R, Ikeya M, Yasui Y, et al. Characterization of mesenchymal stem cell-like cells derived from human iPSCs via neural crest development and their application for osteochondral repair. Stem Cells Int, 2017, 2017: 1960965.
|
| 2. |
Okita K, Yamakawa T, Matsumura Y, et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells, 2013, 31(3): 458-466.
|
| 3. |
Simonson OE, Domogatskaya A, Volchkov P, et al. The safety of human pluripotent stem cells in clinical treatment. Ann Med, 2015, 47(5): 370-380.
|
| 4. |
康明, 黃杰華, 張理選, 等. 殼聚糖/胡須/磷酸鈣骨水泥復合生物材料的力學性能及對誘導多能干細胞成骨潛能的影響. 中國修復重建外科雜志, 2018, 32(7): 959-967.
|
| 5. |
Jung Y, Bauer G, Nolta JA. Concise review: Induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products. Stem Cells, 2012, 30(1): 42-47.
|
| 6. |
de Peppo GM, Marolt D. Modulating the biochemical and biophysical culture environment to enhance osteogenic differentiation and maturation of human pluripotent stem cell-derived mesenchymal progenitors. Stem Cell Res Ther, 2013, 4(5): 106.
|
| 7. |
Barberi T, Willis LM, Socci ND, et al. Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med, 2005, 2(6): e161.
|
| 8. |
Hwang NS, Varghese S, Lee HJ, et al. In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc Natl Acad Sci U S A, 2008, 105(52): 20641-20646.
|
| 9. |
Villa-Diaz LG, Brown SE, Liu Y, et al. Derivation of mesenchymal stem cells from human induced pluripotent stem cells cultured on synthetic substrates. Stem Cells, 2012, 30(6): 1174-1181.
|
| 10. |
Martínez A, Arana P, Fernández A, et al. Synthesis and characterisation of alginate/chitosan nanoparticles as tamoxifen controlled delivery systems. J Microencapsul, 2013, 30(4): 398-408.
|
| 11. |
Cicciù M, Herford AS, Cicciù D, et al. Recombinant human bone morphogenetic protein-2 promote and stabilize hard and soft tissue healing for large mandibular new bone reconstruction defects. J Craniofacial Surg, 2014, 25(3): 860-862.
|
| 12. |
Mohajel N, Najafabadi AR, Azadmanesh K, et al. Drying of a plasmid containing formulation: chitosan as a protecting agent. Daru, 2012, 20(1): 29.
|
| 13. |
Jun SH, Lee EJ, Jang TS, et al. Bone morphogenic protein-2(BMP-2) loaded hybrid coating on porous hydroxyapatite scaffolds for bone tissue engineering. J Mat Sci Mat Med, 2013, 24(3): 773-782.
|
| 14. |
Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci, 2013, 14(1): 1629-1654.
|
| 15. |
Bastami F, Paknejad Z, Jafari M, et al. Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: Implication for bone tissue engineering. Mater Sci Eng C Mater Biol Appl, 2017, 72: 481-491.
|
| 16. |
江濤. 可加工復相陶瓷材料的研究現狀與發展. 材料導報, 2012, 26(17): 49-53.
|
| 17. |
寧聰琴, 戴尅戎. 硬組織替換用羥基磷灰石復合材料的研究進展. 生物醫學工程學雜志, 2003, 20(3): 550-554.
|
| 18. |
Gravel M, Gross T, Vago R, et al. Responses of mesenchymal stem cell to chitosan-coralline composites microstructured using coralline as gas forming agent. Biomaterials, 2006, 9(27): 1899-1906.
|
| 19. |
Hutmacher DW, Schantz T, Zein I, et al. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mat Res, 2001, 55(2): 203-216.
|
| 20. |
全仁夫, 張亮, 許世超. BMP-2/VEGF165雙基因修飾的骨髓間充質干細胞及其制備方法: 中國, 104250655 A. 2014.
|
| 21. |
周傳利. 骨形態發生蛋白2基因表達異常與脊柱融合的相關性研究. 山東青島: 青島大學, 2008.
|
| 22. |
謝尚舉, 全仁夫, 李長明, 等. 復合rhBMP-2殼聚糖水凝膠的制備及其緩釋性能研究. 中國海洋藥物, 2015, 34(4): 31-36.
|
| 23. |
Xu Y, Du Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm, 2003, 250(1): 215-226.
|
| 24. |
黃鑫, 孟國林, 劉建, 等. rh-BMP-2殼聚糖微球的制備及體外檢測. 中國矯形外科雜志, 2009, 17(15): 1172-1174.
|
| 25. |
Park J, Ries J, Gelse K, et al. Bone regeneration in critical size defects by cell-mediated BMP-2 gene transfer: a comparison of adenoviral vectors and liposomes. Gene Ther, 2003, 10(13): 1089-1098.
|
| 26. |
Tsuda H, Wada T, Yamashita T, et al. Enhanced osteoinduction by mesenchymal stem cells transfected with a fiber-mutant adenoviral BMP2 gene. J Gene Med, 2005, 7(10): 1322-1334.
|
| 27. |
Baldwin T. Morality and human embryo research. Introduction to the talking point on morality and human embryo research. EMBO Rep, 2009, 10(4): 299-300.
|
| 28. |
Gaspar-Maia A, Alajem A, Meshorer E, et al. Open chromatin in pluripotency and reprogramming. Nat Rev Mol Cell Biol, 2011, 12(1): 36-47.
|
| 29. |
Strong M, Farrugia A, Rebulla P. Stem cell and cellular therapy developments. Biologicals, 2009, 37(2): 103-107.
|
| 30. |
Nakamura A, Akahane M, Shigematsu H, et al. Cell sheet transplantation of cultured mesenchynmal stem cells enhances bone formation in a rat nonunion model. Bone, 2010, 46(2): 418-424.
|
| 31. |
Lee DW, Yun YP, Park K, et al. Gentamicin and bone morphogenic protein-2(BMP-2)-delivering heparinized-titanium implant with enhanced antibacterial activity and osteointegration. Bone, 2012, 50(4): 974-982.
|
| 32. |
Luong LN, Ramaswamy J, Kohn DH. Effects of osteogenic growth factors on bone marrow stromal cell differentiation in a mineral-based delivery system. Biomaterials, 2012, 33(1): 283-294.
|
| 33. |
Liu Y, Goldberg AJ, Dennis JE, et al. One-step derivation of mesenchymal stem cell (MSC)-like cells from human pluripotent stem cells on a fibrillar collagen coating. PLoS One, 2012, 7(3): e33225.
|
| 34. |
Li B, Hu RY, Sun L, et al. Potential role of andrographolide in the proliferation of osteoblasts mediated by the ERK signaling pathway. Biomed Pharmacother, 2016, 83: 1335-1344.
|