| 1. |
Siegel RL, Miller KD, Jemal A. Cancer statistics. 2016. CA Cancer J Clin, 2016, 66(1): 7-30.
|
| 2. |
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin, 2015, 65(2): 87-108.
|
| 3. |
Walter JE, Heuvelmans MA, de Jong PA, et al. Occurrence and lung cancer probability of new solid nodules at incidence screening with low-dose CT: Analysis of data from the randomised, controlled NELSON trial. Lancet Oncol, 2016, 17(7): 907-916.
|
| 4. |
Liang M, Tang W, Xu DM, et al. Low-dose CT screening for lung cancer: Computer-aided detection of missed lung cancers. Radiology, 2016, 281(1): 279-288.
|
| 5. |
Zhu WY, Tan LL, Wang Zy, et al. Clinical characteristics and advantages of primary peripheral micro-sized lung adenocarcinoma over small-sized lung adenocarcinoma. Eur J Cardiothorac Surg, 2016, 49(4): 1095-1102.
|
| 6. |
曹孟昆, 姜杰, 朱曉雷, 等. 人工智能肺部結節輔助診療系統預測肺結節的良惡性及浸潤情況. 中國胸心血管外科臨床雜志, 2021, 28(3): 283-287.
|
| 7. |
Sui Y, Wei Y, Zhao D. Computer-aided lung nodule recognition by SVM classifier based on combination of random undersampling and SMOTE. Comput Math Methods Med, 2015: 3686-3674.
|
| 8. |
Walter JE, Heuvelmans MA, Ten Haaf K, et al. Persisting new nodules in incidence rounds of the NELSON CT lung cancer screening study. Thorax, 2019, 74(3): 247-253.
|
| 9. |
張遜. 人工智能輔助肺癌診療一體化解決方案的臨床實踐與展望. 中國胸心血管外科臨床雜志, 2019, 26(12): 1167-1170.
|
| 10. |
Wang S, Yang DM, Rong R, et al. Artificial intelligence in lung cancer pathology image analysis. Cancers (Basel), 2019, 11(11): 1673.
|
| 11. |
Espinoza JL, Dong LT. Artificial intelligence tools for refining lung cancer screening. J Clin Med, 2020, 9(12): 3860.
|
| 12. |
Kim MS, Park HY, Kho BG, et al. Artificial intelligence and lung cancer treatment decision: Agreement with recommendation of multidisciplinary tumor board. Transl Lung Cancer Res, 2020, 9(3): 507-514.
|
| 13. |
Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med, 2019, 25(6): 954-961.
|
| 14. |
Zhang C, Sun X, Dang K, et al. Toward an expert level of lung cancer detection and classification using a deep convolutional neural network. Oncologist, 2019, 24(9): 1159-1165.
|
| 15. |
Setio AA, Ciompi F, Litjens G, et al. Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging, 2016, 35(5): 1160-1169.
|
| 16. |
Thiryayi SA, Rana DN, Narine N, et al. Establishment of an endobronchial ultrasound-guided transbronchial fine needle aspiration service with rapid on-site evaluation: 2 years experience of a single UK centre. Cytopathology, 2016, 27(5): 335-343.
|
| 17. |
李欣菱, 郭芳芳, 周振, 等. 基于深度學習的人工智能胸部CT肺結節檢測效能評估. 中國肺癌雜志, 2019, 22(6): 336-340.
|
| 18. |
Walter JE, Heuvelmans MA, de Bock GH, et al. Relationship between the number of new nodules and lung cancer probability in incidence screening rounds of CT lung cancer screening: The NELSON study. Lung Cancer, 2018, 125: 103-108.
|
| 19. |
Setio AA, Traverso A, de Bel T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Med Image Anal, 2017, 42: 1-13.
|
| 20. |
董來東, 黃果. 基于CT影像的人工智能輔助診斷系統對肺癌診斷價值4 771例的系統評價與Meta分析. 中國胸心血管外科臨床雜志, 2021. [Epub ahead of print].
|
| 21. |
黃雙雙, 張勝男, 葉君如, 等. 經皮肺活檢組織病理、微生物培養及快速現場評價對肺部感染性疾病的診斷價值. 中華醫學雜志, 2019, 99(42): 3340-3344.
|