| 1. |
Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle-fibers. Nature, 1976, 260(5554): 799-802.
|
| 2. |
Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952, 117(4): 500-544.
|
| 3. |
Hodgkin A L, Huxley A F, Katz B. Measurement of current-voltage relations in the membrane of the giant axon of loligo. J Physiol London, 1952, 116(4): 424-448.
|
| 4. |
Anderson C R, Cull-Candy S G, Miledi R. Potential-dependent transition temperature of ionic channels induced by glutamate in locust muscle. Nature, 1977, 268(5621): 663-665.
|
| 5. |
Paris L, Marc I, Charlot B, et al. Millisecond infrared laser pulses depolarize and elicit action potentials on in-vitro dorsal root ganglion neurons. Biomed Opt Express, 2017, 8(10): 4568-4578.
|
| 6. |
Duke A R, Cayce J M, Malphrus J D, et al. Combined optical and electrical stimulation of neural tissue in vivo. J Biomed Opt, 2009, 14(6): 60501.
|
| 7. |
Jenkins M W, Duke A R, Gu S, et al. Optical pacing of the embryonic heart. Nat Photonics, 2010, 4(9): 623-626.
|
| 8. |
Jiang Bin, Hou Wensheng, Xia Nan, et al. Inhibitory effect of 980-nm laser on neural activity of the rat's cochlear nucleus. Neurophotonics, 2019, 6(3): 035009.
|
| 9. |
Haas A J, Le Page Y, Zhadobov M, et al. Effect of acute millimeter wave exposure on dopamine metabolism of NGF-treated PC12 cells. J Radiat Res, 2017, 58(4): 439-445.
|
| 10. |
De Seze R, Poutriquet C, Gamez C, et al. Repeated exposure to nanosecond high power pulsed microwaves increases cancer incidence in rat. PloS One, 2020, 15(4): e0226858.
|
| 11. |
Haas A J, Le Page Y, Zhadobov M, et al. Effects of 60-GHz millimeter waves on neurite outgrowth in PC12 cells using high-content screening. Neurosci Lett, 2016, 618(4): 58-65.
|
| 12. |
Liu Qiang, Frerck M J, Holman H A, et al. Exciting cell membranes with a blustering heat shock. Biophys J, 2014, 106(8): 1570-1577.
|
| 13. |
Shapiro M G, Homma K, Villarreal S, et al. Infrared light excites cells by changing their electrical capacitance. Nat Commun, 2012, 3: 736.
|
| 14. |
Li Xinyu, Liu Jia, Liang Shanshan, et al. 980-Nm infrared laser modulation of sodium channel kinetics in a neuron cell linearly mediated by photothermal effect. J Biomed Opt, 2014, 19(10): 105002.
|
| 15. |
Shapiro M G, Priest M F, Siegel P H, et al. Thermal mechanisms of millimeter wave stimulation of excitable cells. Biophys J, 2013, 104(12): 2622-2628.
|
| 16. |
Yao Jing, Liu Beiying, Qin Feng. Rapid temperature jump by infrared diode laser irradiation for Patch-Clamp studies. Biophys J, 2009, 96(9): 3611-3619.
|
| 17. |
Bec J M, Albert E S, Marc I, et al. Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons. Lasers Surg Med, 2012, 44(9): 736-745.
|
| 18. |
Wells J, Kao C, Konrad P, et al. Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophys J, 2007, 93(7): 2567-2580.
|
| 19. |
Moreau D, Lefort C, Pas J, et al. Infrared neural stimulation induces intracellular Ca2+ release mediated by phospholipase C. J Biophotonics, 2018, 11(2): e201700020.
|
| 20. |
鄭羽, 李靜, 蔡迪, 等. 快電容補償方法對提高神經元細胞動作電位發放精度的影響. 生物醫學工程學雜志, 2014, 31(6): 1191-1194.
|
| 21. |
Lothet E H, Shaw K M, Lu Hui, et al. Selective inhibition of small-diameter axons using infrared light. Sci Rep, 2017, 7(1): 3275.
|
| 22. |
Eom K, Byun K M, Jun S B, et al. Theoretical study on gold-nanorod-enhanced near-infrared neural stimulation. Biophys J, 2018, 115(8): 1481-1497.
|
| 23. |
Sigworth F J, Affolter H, Neher E. Design of the EPC-9, a computer-controlled patch-clamp amplifier. 2. Software. J Neurosci Meth, 1995, 56(2): 203-215.
|
| 24. |
Sigworth F J. Design of the EPC-9, a computer-controlled patch-clamp amplifier. 1. Hardware. J Neurosci Meth, 1995, 56(2): 195-202.
|
| 25. |
葉燚, 胡剛, 瞿安連. 全自動膜片鉗放大器快電容補償技術改進. 上海生物醫學工程, 2006, 27(2): 98-101.
|
| 26. |
Kuyucak S, Chung S H. Temperature-dependence of conductivity in electrolyte-solutions and ionic channels of biological-membranes. Biophys Chem, 1994, 52(1): 15-24.
|
| 27. |
Sakmann B, Neher E. Single-channel recording. New York: Springer US, 1995.
|
| 28. |
金虎杰, 韓德萬, 王成貴. 液體電阻率與溫度和濃度之間關系的測量. 延邊大學學報(自然科學版), 2003, 29(1): 72-75.
|
| 29. |
Plaksin M, Shapira E, Kimmel E, et al. Thermal transients excite neurons through universal intramembrane mechanoelectrical effects. Phys Rev X, 2018, 8(1): 2160-3308.
|
| 30. |
Entwisle B, McMullan S, Bokiniec P, et al. In vitro neuronal depolarization and increased synaptic activity induced by infrared neural stimulation. Biomed Opt Express, 2016, 7(9): 3211-3219.
|
| 31. |
Schmitt B M, Koepsell H. An improved method for real-time monitoring of membrane capacitance in Xenopus laevis oocytes. Biophys J, 2002, 82(3): 1345-1357.
|
| 32. |
Farrell B, Do Shope C, Brownell W E. Voltage-dependent capacitance of human embryonic kidney cells. Phys Rev E, 2006, 73(4): 041930.
|