Objective To investigate relationship between hypoxia microenvironment and occurrence and development of hepatocellular carcinoma (HCC). Method The relevant literatures on researches of the relationship between the hypoxic microenvironment and the HCC were review and analyzed. Results The hypoxia microenvironment played an important role in inducing the drug resistance and angiogenesis of the HCC cells, and it was an important factor of affecting the ability of tumor metabolism, invasion, and migration. The hypoxia microenvironment could up-regulate the expression of hypoxia-inducible factors (HIFs) and promote its transcriptional activity, promote the expression of the vascular endothelial growth factor gene, and regulate the neovascularization in the tumor. Among them, the HIF-1α played a major role in regulating the angiogenesis, immune escape, tumor invasion and metastasis-related gene expression, participating in the glycolysis, regulating lysyl oxidase 2 and thus regulated epithelial-mesenchymal transition, then promoted the invasion and metastasis of the HCC; HIF-2α was a key regulator of the malignant phenotype involving in the cell proliferation, angiogenesis, apoptosis, metabolism, metastasis, and resistance to chemotherapy. The hypoxia microenvironment posed some difficulties for the treatment of HCC, but it was also a potential therapeutic breakthrough. Conclusion Hypoxia microenvironment can promote invasion and metastasis of HCC through various mechanisms, which provides new targets and strategies for clinical treatment of HCC.
ObjectiveTo summarize the research results of metabolites of breast cancer based on metabonomics technology, and systematically reviews them in order to provide a new direction for the research of metabolism of breast cancer.MethodBy searching the relevant literatures in recent years, the application of metabonomics in identifying high-risk breast cancer population, monitoring the progress of tumor and evaluating the response of radiotherapy and chemotherapy were analyzed and summarized.ResultsWith the development of high-resolution, high-sensitivity and high-throughput bioanalysis platform technology, metabolomics had been widely used in breast cancer research field by virtue of its unique perspective and technical advantages to more accurately, systematically and dynamically monitor the changes of host metabolites.ConclusionMetabolomics technology provides a new research direction for primary prevention, early screening and diagnosis of breast cancer and optimal treatment strategy selection.
ObjectiveTo summarize the relationship between exosomes and the occurrence and development of gastrointestinal cancer.MethodsThrough online database, we collected the literatures about the relationship between exosomes and the development of gastrointestinal cancer at home and abroad, and then made an review.ResultsExosomes secreted by gastrointestinal cancer cells were related to tumorigenesis, tumor cell survival, chemoresistance, and early metastasis. Exosomes could play the role of information transmission, and regulation of cell physiology and pathological process in the development of gastrointestinal cancer through a variety of intercellular binding ways, and affectted the occurrence and development of gastrointestinal cancer via epigenetic regulation and tumor related signal transduction mechanism. They had been proved to be biomarkers, targets, and drug carriers for the treatment of gastrointestinalcancer.ConclusionIt is a new way to explore the molecular mechanism of exosomes in the development of gastrointestinal cancer.
ObjectiveTo investigate the effect of Wnt5a derived from tumor-associated fibroblasts (CAFs) on the migration and invasion of gastric cancer cells. MethodsThe differentially expressed genes Wnt5a between CAFs and normal gastric fibroblasts (NGFs) in gastric cancer tissues and their corresponding normal gastric tissues using the GEO database GSE194261 dataset were screened. Immunohistochemical method was used to detect the expression of Wnt5a protein in tissue samples of clinical gastric cancer patients, and the relationship between Wnt5a protein expression and clinicopathological features of gastric cancer was analyzed. CAFs and NGFs were extracted from fresh surgical specimens of gastric cancer patients, and the expression of Wnt5a in CAFs was detected by real-time fluorescence quantitative-polymerase chain reaction and Western blot experiment. Transwell invasion and migration experiment was used to observe the effects of CAFs, inhibition of Wnt5a expression in CAFs and different concentrations of recombinant Wnt5a protein on the migration and invasion ability of gastric cancer MGC-803 and MKN-28 cell lines in vitro. ResultsThrough the screening of GEO database GSE194261 data set, it was found that Wnt5a was more expressed in CAFs than NGFs (P<0.05). Immunohistochemical results showed that the expression of Wnt5a protein in gastric cancer tissues was significantly stronger than that in normal gastric tissues (P<0.05), and the expression of Wnt5a protein was related to T stage of tumor (χ2=5.035, P<0.05), but not related to gender, age, degree of tumor differentiation, lymph node metastasis, vascular invasion and nerve invasion (P>0.05). Inhibiting Wnt5a derived from CAFs could inhibit the invasion and migration of gastric cancer cells. By stimulating gastric cancer cells with different concentrations of human recombinant Wnt5a protein, it was found that when the concentration of human recombinant Wnt5a protein was greater than 100 ng/mL, the invasion and migration abilities of MGC-803 and MKN-28 gastric cancer cells were significantly increased (P<0.05). ConclusionWnt5a is highly expressed in CAFs derived from the interstitial tissue of gastric cancer, which is related to the invasion depth of gastric cancer and can promote the invasion and migration of gastric cancer cells.
Objective To introduce the inflammatory microenvironment and epithelial-mesenchymal transition process of hepatocellular carcinoma, and review the relationship between them. Methods Domestic and international literatures were collected to summary the relationship between epithelial-mesenchymal transition and the inflammatory microenvironment of hepatocellular carcinoma. Result Many inflammatory factors and viral gene encoding proteins in the inflammatory microenvironment play an important role in the process of epithelial-mesenchymal transition in hepatocellular carcinoma. Conclusions The inflammatory microenvironment of hepatocellular carcinoma is an indispensable role in the process of epithelial-mesenchymal transition. The inhibition and treatment of inflammatory microenvironment may play a more active role in the control of tumor invasion and metastasis.
ObjectiveTo understand the single-cell RNA sequencing (scRNA-seq) and its research progress in the tumor microenvironment (TME) of breast cancer, in order to provide new ideas and directions for the research and treatment of breast cancer. MethodThe development of scRNA-seq technology and its related research literature in breast cancer TME at home and abroad in recent years was reviewed. ResultsThe scRNA-seq was a quantum technology in high-throughput sequencing of mRNA at the cellular level, and had become a powerful tool for studying cellular heterogeneity when tissue samples were fewer. While capturing rare cell types, it was expected to accurately describe the complex structure of the TME of breast cancer. ConclusionsAfter decades of development, scRNA-seq has been widely used in tumor research. Breast cancer is a malignant tumor with high heterogeneity. The application of scRNA-seq in breast cancer research can better understand its tumor heterogeneity and TME, and then promote development of personalized diagnosis and treatment.
ObjectiveTo analyze the correlation between the molecular biological information of SMARCA4-deficient non-small cell lung cancer (SMARCA4-dNSCLC) and its clinical prognosis, and to explore the spatial features and molecular mechanisms of interactions between cells in the tumor microenvironment (TME) of SMARCA4-dNSCLC. MethodsUsing data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), this study conducted functional enrichment analysis on differentially expressed genes (DEGs) in SMARCA4-dNSCLC and depicted its genomic variation landscape. Through weighted gene co-expression network analysis (WGCNA) and a combination of 10 different machine learning algorithms, patients in the training group were divided into a low-risk group and a high-risk group based on a median risk score (RiskScore). A corresponding prognostic prediction model was established, and on this basis, a nomogram was constructed to predict the 1, 3, and 5-year survival rates of patients. K-M survival curves, receiver operating characteristic (ROC) curves, and time-dependent ROC curves were drawn to evaluate the predictive ability of the model. External datasets from GEO further validated the prognostic value of the prediction model. In addition, we also evaluated the immunological characteristics of the TME of the prognostic model. Finally, using single-cell RNA sequencing (scRNA-seq) and spatial transcriptome (ST), we explored the spatial features of interactions between cells in the TME of SMARCA4-dNSCLC, intercellular communication, and molecular mechanisms. ResultsA total of 56 patients were included in the training group, including 38 males and 18 females, with a median age of 62 (56-70) years. There were 28 patients in both the low-risk and high-risk groups. A total of 474 patients were included in the training group, including 265 males and 209 females, with a median age of 65 (58-70) years. A risk score model composed of 8 prognostic feature genes (ELANE, FSIP2, GFI1B, GPR37, KRT81, RHOV, RP1, SPIC) was established. Compared with patients in the low-risk group, those in the high-risk group showed a more unfavorable prognostic outcome. Immunological feature analysis revealed differences in the infiltration of various immune cells between the low-risk and high-risk groups. ScRNA-seq and ST analyses found that interactions between cells were mainly through macrophage migration inhibitory factor (MIF) signaling pathways (MIF-CD74+CXCR4 and MIF-CD74+CD44) via ligand-receptor pairs, while also describing the niche interactions of the MIF signaling pathway in tissue regions. ConclusionThe 8-gene prognostic model constructed in this study has certain predictive accuracy in predicting the survival of SMARCA4-dNSCLC. Combining the ScRNA-seq and ST analyses, cell-to-cell crosstalk and spatial niche interaction may occur between cells in the TME via the MIF signaling pathway (MIF-CD74+CXCR4 and MIF-CD74+CD44).
Objective To investigate the relationship between the expression of mast cell expressed membrane protein 1 (MCEMP1) in gastric cancer and its relationship with prognosis and tumor immune infiltration. Methods Transcriptome expression profile data and clinical data information of gastric cancer and normal samples were downloaded from TCGA database, and differentially expressed genes in gastric cancer tumor microenvironment were extracted using R 4.0.5 software. Protein-protein interaction network of differentially expressed genes was constructed by using STRING online website, protein-protein interaction network and univariate Cox proportional hazards regression analysis were used for cross-tabulation analysis to obtain key genes. Kruskal-Wallis rank sum test was used to investigate the correlation between key genes and clinicopathological features. The possible signaling pathways involved in key genes were predicted by gene set enrichment analysis. We further analyzed the relationship between expression of key gene and the level of immune infiltration and immune molecules in gastric cancer by TISIDB online database and CIBERSORT algorithm. Results A total of 760 differentially expressed genes in gastric cancer were found and a key gene of MCEMP1 was derived from cross-tabulation analysis based on the results of protein-protein interaction network and univariate Cox proportional hazards regression analysis. Expression of MCEMP1 was significantly upregulated in gastric cancer tissues (P<0.001), and survival analysis showed that the overall survival rate of the group with high expression level of MCEMP1 was lower than that of low expression [HR=1.176, 95%CI (1.066, 1.297), P=0.046]. Expression of MCEMP1 also correlated with age, T-stage, and clinical stage of gastric cancer (P<0.05) , and expression of MCEMP1 was significantly associated with a variety kinds of immune cells and expression of immune molecules (P<0.05). Conclusion MCEMP1 is a potential prognostic marker for gastric cancer and is associated with immune infiltration in gastric cancer.
ObjectiveTo explore the changes of cytokines in the tumor microenvironment of colorectal cancer and the relationship between the expression of CD16a mRNA and cytokines in the microenvironment.MethodsRT-PCR and flow cytometry microsphere array (CBA) were used to detect the expressions of CD16a mRNA, as well as cytokines of Th1 [interleukin (IL)-2, IL-12, and interferone-γ (IFN-γ)], Th2 (IL-4, IL-6, and IL-10), tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor (VEGF) in the tumor and the adjacent tissues of 42 patients with colorectal cancer, respectively, and the correlation between the expression of CD16a mRNA and cytokines in the microenvironment was analyzed.ResultsThe expressions of IL-6, TNF-α, and VEGF in colorectal cancer tissues were significantly higher than those in the adjacent tissues (P<0.05). There was no significant difference in the expression of IL-2,IL-4, IL-10, IL-12, and IFN-γ between the two kinds of tissues (P>0.05). Clinicopathological factor analysis showed that, the levels of IL-6 and VEGF in the colorectal cancer patients with preoperative normal CEA were significantly higher than those with elevated CEA (P<0.05). Correlation analysis showed that the expression of IL-6 was negatively correlated with expression of CD16a mRNA (P<0.05).ConclusionsThe expressions of IL-6, TNF-α, and VEGF in tumor tissues were significantly higher than adjacent tissues, and the effect of angiogenic and immunosuppression were enhanced. The expression of CD16a mRNA in the microenvironment of colorectal cancer tumor is negatively correlated with the expression of IL-6.
ObjectiveTo summarize the relationship between integrins, tumor metabolism, and tumor cells with pancreatic stellate cells in the tumor microenvironment, in order to provide targets and ideas for the treatment of pancreatic ductal adenocarcinoma.MethodTo review the literatures on pancreatic stellate cells, integrins, and amino acid metabolism as therapeutic targets for pancreatic ductal adenocarcinoma in the domestic and overseas.ResultsThe drug research for pancreatic ductal adenocarcinoma was currently under vigorous development, but remain in the animal and clinical test stage. As a new therapeutic protein, ProAgio could inhibit the expression of integrin αvβ3, activation and secretion of pancreatic stellate cells, and alanine metabolism in the microenvironment of pancreatic ductal adenocarcinoma, so as to achieve the dual effects of anti-fibrosis and anti-tumor.ConclusionsThe roles of activated pancreatic stellate cells, ProAgio, integrin αvβ3, and alanine metabolism in pancreatic ductal adenocarcinoma have been partially elucidated, but the specific mechanism still needs further investigation and may become a completely new therapeutic target someday.