ObjectiveTo understand the research status of phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signaling pathway in the thyroid cancer (TC), as well as its role in the occurrence, cell differentiation, invasion, and metastasis of the TC, so as to find potential targets for treatment of TC. MethodThe literature about the research of PI3K/AKT signaling pathway in the TC was searched and summarized. ResultsThe PI3K/AKT signaling pathway was abnormally activated directly or indirectly in the TC, resulting in inhibition of cell apoptosis, malignant proliferation, accelerated cycle progression, invasion, and metastasis, etc., which promoted the occurrence and development of the TC. There were also some tumor suppressor genes, microRNAs, long chain non-coding RNAs, etc., which indirectly inhibited the activation of PI3K/AKT signaling pathway, or directly acted on it inhibiting its activity to inhibit the occurrence and development of the TC. ConclusionsFor the TC, some proteins, genes, microRNAs, and long chain non-coding RNAs directly or indirectly activate the PI3K/AKT signaling pathway through different targets to promote the occurrence and development of TC. At the same time, many targets inhibit the activation of the PI3K/AKT signaling pathway, which inhibits the malignant proliferation, invasion, and metastasis of TC. At present, there have been studies trying to use PI3K/AKT signaling pathway as a breakthrough for the treatment of TC. In-depth exploration of the role of PI3K/AKT signaling pathway in different TC is of great significance to find new targets for the treatment of TC.
ObjectiveTo summarize the latest research progress of graphene and its derivatives (GDs) in bone repair. MethodsThe relevant research literature at home and abroad in recent years was extensively accessed. The properties of GDs in bone repair materials, including mechanical properties, electrical conductivity, and antibacterial properties, were systematically summarized, and the unique advantages of GDs in material preparation, functionalization, and application, as well as the contributions and challenges to bone tissue engineering, were discussed. ResultsThe application of GDs in bone repair materials has broad prospects, and the functionalization and modification technology effectively improve the osteogenic activity and material properties of GDs. GDs can induce osteogenic differentiation of stem cells through specific signaling pathways and promote osteogenic activity through immunomodulatory mechanisms. In addition, the parameters of GDs have significant effects on the cytotoxicity and degradation behavior.ConclusionGDs has great potential in the field of bone repair because of its excellent physical and chemical properties and biological properties. However, the cytotoxicity, biodegradability, and functionalization strategies of GDs still need to be further studied in order to achieve a wider application in the field of bone tissue engineering.
As the most common primary malignant bone tumor in children and adolescents, osteosarcoma has the characteristics of high malignancy, easy metastasis and poor prognosis. The recurrence, metastasis and multi-drug resistance of osteosarcoma are the main problems that limit the therapeutic effect and survival rate of osteosarcoma. Among them, lung metastasis is often the main target organ for distant metastasis of osteosarcoma. In recent years, people have paid attention to the signaling pathway of the occurrence and development of osteosarcoma and made in-depth studies on its mechanism. A variety of relevant signaling pathways have been constantly clarified. At present, there is still a lack of systematic and multi-directional exploration and summary on the signaling pathway related to the pulmonary metastasis of osteosarcoma. This paper explores the new direction of targeted therapy for osteosarcoma by elucidating the relationship between the signaling pathway associated with osteosarcoma and the pulmonary metastasis of osteosarcoma.
The pathogenesis of Vogt-Koyanagi Harada disease (VKH) has not yet been fully defined. Current studies mainly suggest that VKH is actually an autoimmune disease, especially related to the immune response mediated by various signal transduction pathways involved in the function of T cells. In recent years, the influence of the balance imbalance of various T cell subsets in cellular immunity on the pathogenesis of VKH has been a hot research direction. Currently, T helper cell 17/T regulatory cells, balance is the focus of clinical research, meanwhile, new discoveries and potential clinical treatment schemes have been made for related cellular pathways, particularly the Janus kinase/signal transducers and activators of transcription pathway and NF-kappa B pathway. The exploration of B cells in the pathogenesis of VKH has also achieved initial results through the successful application of various targeted drugs. In the future, further screening and localization of genes or proteins that are abnormally regulated or expressed in VKH, for which early comprehensive and in-depth exploration will be helpful, thus improve the efficacy of clinical treatment programs and develop new therapeutic targets.
Rheumatoid arthritis (RA) is a chronic autoimmune disease remarkably characterized by synovitis of joints, whose pathogenesis is complicated and not yet fully elucidated. A variety of cells, cytokines and intercellular signaling pathways are involved in the occurrence and development of RA. The mitogen activation protein kinase (MAPK) signaling pathway is closely related to the pathogenesis of RA, and plays an important role in the formation of pannus, synovitis, and bone destruction. This paper reviews the research progress of MAPK signaling pathway in RA from the aspects of the interaction of MAPK signaling pathway with a variety of key cells and cytokines in the pathogenesis of RA, in order to provide a direction and theoretical basis for anti-RA drug therapy research.
Objective To investigate the role of mitochondrial autophagy mediated by PINK1 (homologous phosphatase tensin induced kinase 1) /Parkin (Parkinson’s protein) signaling pathway in severe pneumonia of rats. Methods Twenty rats were randomly divided into control group and model group (severe pneumonia model), with 10 rats in each group, to explore the effects of severe pneumonia on lung function and pathology in rats. Then, 30 rats were randomly divided into control group, model group and mdivi-1 (mitochondrial autophagy inhibitor) group, with 10 rats in each group, to further explore the effects of severe pneumonia on mitochondrial autophagy indicators of rats. ResultsCompared with the control group, the resting ventilation volume [(3.44±0.22) vs. (1.58±0.18) mL/min] and airway resistance ratio (77.48±3.84 vs. 47.76±5.54) in the model group were decreased (P<0.05). In the model group, the lung tissue was injured and a large number of inflammatory cells were infiltrated. The protein and mRNA expression levels of Parkin, PINK1 and microtubule-associated protein1 light chain 3 in lung tissues of model group were increased (P<0.05). Compared with model group, the ratio of resting ventilator-to-airway resistance in mdivi-1 group increased (P<0.05). The injury and inflammatory infiltration of lung tissue were improved in mdivi-1 group. The expression levels of Parkin, PINK1 and microtubule-associated protein1 light chain 3 protein and mRNA in lung tissues of mdivi-1 group were decreased (P<0.05). Conclusion Mdivi-1 can improve the abnormal lung function structure in rats with severe pneumonia, and the mechanism may be related to mitochondrial autophagy mediated by PINK1/Parkin signaling pathway.
ObjectiveTo summarize the research progress of the effects and mechanisms of Hedgehog signaling pathway in regulating bone formation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). MethodsThe related literature concerning the regulations and mechanism of Hedgehog signaling pathway in osteogenic differentiation of BMSCs and bone formation in vivo, in vitro, and ex vivo studies in recent years was analyzed and summarized. ResultsThe in vitro studies indicate that Hedgehog signaling pathway can promote osteogenic differentiation of BMSCs via activation of key molecules Smoothened (Smo) and Gli1 which are downstream of Hedgehog signaling, and Hedgehog signaling can activate mTORC2-Akt signaling by upregulation of insulin-like growth factor which has similar effects. Hedgehog signaling regulates osteoblast differentiation via activation of Hh-Smo-Ptch1-Gli signaling pathway and inhibition of Hh-Gαi-RhoA stress fibre signaling. Hedgehog signaling can regulate key molecules of osteogenesis Runx2 for promoting osteogenic differentiation and matrix mineralization by synergism of bone morphogenetic protein and Wnt signaling, and promotes bone formation and repair and healing for bone defect and bone graft model in vivo. ConclusionHedgehog signaling can regulate bone formation and osteogenic differentiation of BMSCs via activation of Hedgehog signaling and other signaling pathways. Hedgehog signaling pathway may be a potential target for developing treatment for bone related diseases of osteoporosis and fracture healing disorders.
Objective To discuss the role of heparan sulfate (HS) in bone formation and bone remodeling and summarize the research progress in the osteogenic mechanism of HS. Methods The domestic and abroad related literature about HS acting on osteoblast cell line in vitro, HS and HS composite scaffold materials acting on the ani-mal bone defect models, and the effect of HS proteoglycans on bone development were summarized and analyzed. Results Many growth factors involved in fracture healing especially heparin-binding growth factors, such as fibroblast growth factors, bone morphogenetic protein, and transforming growth factor β, are connected noncovalently with long HS chains. HS proteoglycans protect these proteins from protease degradation and are directly involved in the regulation of growth factors signaling and bone cell function. HS can promote the differentiation of stem cells into osteoblasts and enhance the differentiation of osteoblasts. In bone matrix, HS plays a significant role in promoting the formation, maintaining the stability, and accelerating the mineralization. Conclusion The osteogenesis of HS is pronounced. HS is likely to become the clinical treatment measures of fracture nonunion or delayed union, and is expected to provide more choices for bone tissue engineering with identification of its long-term safety.
The classical Hippo pathway leads to the phosphorylation of downstream effector molecules Hippo-Yes-associated protein (Yap) and transcriptional coactivator PDZ-binding motif (Taz) serine sites through a kinase response, thereby promoting cell proliferation, controlling cell polarity, changing cytoskeleton, it plays an important regulatory role in various pathophysiological processes such as epithelial-mesenchymal transition and inhibition of cell contact. Studies have shown that Yap/Taz can affect the progression of vitreoretinal diseases, opening up new prospects for the pathogenesis and clinical treatment of diabetic retinopathy, proliferative vitreoretinopathy, and retinal ischemia-reperfusion injury. Exploring the molecular mechanism of Yap/Taz provides a possible therapeutic target for future research in the treatment of retinal fibrosis diseases such as diabetic retinopathy and proliferative vitreoretinopathy. At the same time, regulating the activity of local Yap/Taz in the retina will also become an effective therapeutic target for damage-repair in retinal ischemia-reperfusion injury. However, Yap inhibitors have potential retinal toxicity and are still in the preclinical development stage. Further research on the mechanism of action and clinical safety of Yap inhibitors will provide new methods for the treatment of retinal diseases.
A new independent subtype CD4+ T cell which massively secreted interleukin-17 (IL-17) was found at the beginning of the 21st century, and thus it was named as T helper cell 17 (Th17 cell). With the progress of the research in recent years, Th17 cells were found to be widely involved in a variety of the human diseases such as autoimmune diseases, infections and tumors through secretion of IL-17. The relationship between Th17 cells, IL-17 and the occurrence, development and prognosis of lung cancer was reviewed.