Colorectal polyps are important early markers of colorectal cancer, and their early detection is crucial for cancer prevention. Although existing polyp segmentation models have achieved certain results, they still face challenges such as diverse polyp morphology, blurred boundaries, and insufficient feature extraction. To address these issues, this study proposes a parallel coordinate fusion network (PCFNet), aiming to improve the accuracy and robustness of polyp segmentation. PCFNet integrates parallel convolutional modules and a coordinate attention mechanism, enabling the preservation of global feature information while precisely capturing detailed features, thereby effectively segmenting polyps with complex boundaries. Experimental results on Kvasir-SEG and CVC-ClinicDB demonstrate the outstanding performance of PCFNet across multiple metrics. Specifically, on the Kvasir-SEG dataset, PCFNet achieved an F1-score of 0.897 4 and a mean intersection over union (mIoU) of 0.835 8; on the CVC-ClinicDB dataset, it attained an F1-score of 0.939 8 and an mIoU of 0.892 3. Compared with other methods, PCFNet shows significant improvements across all performance metrics, particularly in multi-scale feature fusion and spatial information capture, demonstrating its innovativeness. The proposed method provides a more reliable AI-assisted diagnostic tool for early colorectal cancer screening.
In order to overcome the difficulty in lung parenchymal segmentation due to the factors such as lung disease and bronchial interference, a segmentation algorithm for three-dimensional lung parenchymal is presented based on the integration of surfacelet transform and pulse coupled neural network (PCNN). First, the three-dimensional computed tomography of lungs is decomposed into surfacelet transform domain to obtain multi-scale and multi-directional sub-band information. The edge features are then enhanced by filtering sub-band coefficients using local modified Laplacian operator. Second, surfacelet inverse transform is implemented and the reconstructed image is fed back to the input of PCNN. Finally, iteration process of the PCNN is carried out to obtain final segmentation result. The proposed algorithm is validated on the samples of public dataset. The experimental results demonstrate that the proposed algorithm has superior performance over that of the three-dimensional surfacelet transform edge detection algorithm, the three-dimensional region growing algorithm, and the three-dimensional U-NET algorithm. It can effectively suppress the interference coming from lung lesions and bronchial, and obtain a complete structure of lung parenchyma.
Aiming at the problems of low accuracy and large difference of segmentation boundary distance in anterior cruciate ligament (ACL) image segmentation of knee joint, this paper proposes an ACL image segmentation model by fusing dilated convolution and residual hybrid attention U-shaped network (DRH-UNet). The proposed model builds upon the U-shaped network (U-Net) by incorporating dilated convolutions to expand the receptive field, enabling a better understanding of the contextual relationships within the image. Additionally, a residual hybrid attention block is designed in the skip connections to enhance the expression of critical features in key regions and reduce the semantic gap, thereby improving the representation capability for the ACL area. This study constructs an enhanced annotated ACL dataset based on the publicly available Magnetic Resonance Imaging Network (MRNet) dataset. The proposed method is validated on this dataset, and the experimental results demonstrate that the DRH-UNet model achieves a Dice similarity coefficient (DSC) of (88.01±1.57)% and a Hausdorff distance (HD) of 5.16±0.85, outperforming other ACL segmentation methods. The proposed approach further enhances the segmentation accuracy of ACL, providing valuable assistance for subsequent clinical diagnosis by physicians.
The diagnosis of pancreatic cancer is very important. The main method of diagnosis is based on pathological analysis of microscopic image of Pap smear slide. The accurate segmentation and classification of images are two important phases of the analysis. In this paper, we proposed a new automatic segmentation and classification method for microscopic images of pancreas. For the segmentation phase, firstly multi-features Mean-shift clustering algorithm (MFMS) was applied to localize regions of nuclei. Then, chain splitting model (CSM) containing flexible mathematical morphology and curvature scale space corner detection method was applied to split overlapped cells for better accuracy and robustness. For classification phase, 4 shape-based features and 138 textural features based on color spaces of cell nuclei were extracted. In order to achieve optimal feature set and classify different cells, chain-like agent genetic algorithm (CAGA) combined with support vector machine (SVM) was proposed. The proposed method was tested on 15 cytology images containing 461 cell nuclei. Experimental results showed that the proposed method could automatically segment and classify different types of microscopic images of pancreatic cell and had effective segmentation and classification results. The mean accuracy of segmentation is 93.46%±7.24%. The classification performance of normal and malignant cells can achieve 96.55%±0.99% for accuracy, 96.10%±3.08% for sensitivity and 96.80%±1.48% for specificity.
In response to the issues of single-scale information loss and large model parameter size during the sampling process in U-Net and its variants for medical image segmentation, this paper proposes a multi-scale medical image segmentation method based on pixel encoding and spatial attention. Firstly, by redesigning the input strategy of the Transformer structure, a pixel encoding module is introduced to enable the model to extract global semantic information from multi-scale image features, obtaining richer feature information. Additionally, deformable convolutions are incorporated into the Transformer module to accelerate convergence speed and improve module performance. Secondly, a spatial attention module with residual connections is introduced to allow the model to focus on the foreground information of the fused feature maps. Finally, through ablation experiments, the network is lightweighted to enhance segmentation accuracy and accelerate model convergence. The proposed algorithm achieves satisfactory results on the Synapse dataset, an official public dataset for multi-organ segmentation provided by the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), with Dice similarity coefficient (DSC) and 95% Hausdorff distance (HD95) scores of 77.65 and 18.34, respectively. The experimental results demonstrate that the proposed algorithm can enhance multi-organ segmentation performance, potentially filling the gap in multi-scale medical image segmentation algorithms, and providing assistance for professional physicians in diagnosis.
Brain image segmentation algorithm based on deep learning is a research hotspot at present. In this paper, firstly, the significance of brain image segmentation and the content of related brain image segmentation algorithm are systematically described, highlighting the advantages of brain image segmentation algorithms based on deep learning. Then, this paper introduces current brain image segmentation algorithms based on deep learning from three aspects: the brain image segmentation algorithms based on problems existent to brain image, the brain image segmentation algorithms based on prior knowledge guidance and the application of general deep learning models in brain image segmentation, so as to enable researchers in relevant fields to understand current research progress more systematically. Finally, this paper provides a general direction for the further research of brain image segmentation algorithm based on deep learning.
Medical image segmentation based on deep learning has become a powerful tool in the field of medical image processing. Due to the special nature of medical images, image segmentation algorithms based on deep learning face problems such as sample imbalance, edge blur, false positive, false negative, etc. In view of these problems, researchers mostly improve the network structure, but rarely improve from the unstructured aspect. The loss function is an important part of the segmentation method based on deep learning. The improvement of the loss function can improve the segmentation effect of the network from the root, and the loss function is independent of the network structure, which can be used in various network models and segmentation tasks in plug and play. Starting from the difficulties in medical image segmentation, this paper first introduces the loss function and improvement strategies to solve the problems of sample imbalance, edge blur, false positive and false negative. Then the difficulties encountered in the improvement of the current loss function are analyzed. Finally, the future research directions are prospected. This paper provides a reference for the reasonable selection, improvement or innovation of loss function, and guides the direction for the follow-up research of loss function.
In computer-aided medical diagnosis, obtaining labeled medical image data is expensive, while there is a high demand for model interpretability. However, most deep learning models currently require a large amount of data and lack interpretability. To address these challenges, this paper proposes a novel data augmentation method for medical image segmentation. The uniqueness and advantages of this method lie in the utilization of gradient-weighted class activation mapping to extract data efficient features, which are then fused with the original image. Subsequently, a new channel weight feature extractor is constructed to learn the weights between different channels. This approach achieves non-destructive data augmentation effects, enhancing the model's performance, data efficiency, and interpretability. Applying the method of this paper to the Hyper-Kvasir dataset, the intersection over union (IoU) and Dice of the U-net were improved, respectively; and on the ISIC-Archive dataset, the IoU and Dice of the DeepLabV3+ were also improved respectively. Furthermore, even when the training data is reduced to 70 %, the proposed method can still achieve performance that is 95 % of that achieved with the entire dataset, indicating its good data efficiency. Moreover, the data-efficient features used in the method have interpretable information built-in, which enhances the interpretability of the model. The method has excellent universality, is plug-and-play, applicable to various segmentation methods, and does not require modification of the network structure, thus it is easy to integrate into existing medical image segmentation method, enhancing the convenience of future research and applications.
Most current medical image segmentation models are primarily built upon the U-shaped network (U-Net) architecture, which has certain limitations in capturing both global contextual information and fine-grained details. To address this issue, this paper proposes a novel U-shaped network model, termed the Multi-View U-Net (MUNet), which integrates self-attention and multi-view attention mechanisms. Specifically, a newly designed multi-view attention module is introduced to aggregate semantic features from different perspectives, thereby enhancing the representation of fine details in images. Additionally, the MUNet model leverages a self-attention encoding block to extract global image features, and by fusing global and local features, it improves segmentation performance. Experimental results demonstrate that the proposed model achieves superior segmentation performance in coronary artery image segmentation tasks, significantly outperforming existing models. By incorporating self-attention and multi-view attention mechanisms, this study provides a novel and efficient modeling approach for medical image segmentation, contributing to the advancement of intelligent medical image analysis.
With the change of medical diagnosis and treatment mode, the quality of medical image directly affects the diagnosis and treatment of the disease for doctors. Therefore, realization of intelligent image quality control by computer will have a greater auxiliary effect on the radiographer’s filming work. In this paper, the research methods and applications of image segmentation model and image classification model in the field of deep learning and traditional image processing algorithm applied to medical image quality evaluation are described. The results demonstrate that deep learning algorithm is more accurate and efficient than the traditional image processing algorithm in the effective training of medical image big data, which explains the broad application prospect of deep learning in the medical field. This paper developed a set of intelligent quality control system for auxiliary filming, and successfully applied it to the Radiology Department of West China Hospital and other city and county hospitals, which effectively verified the feasibility and stability of the quality control system.