• <table id="gigg0"></table>
  • west china medical publishers
    Keyword
    • Title
    • Author
    • Keyword
    • Abstract
    Advance search
    Advance search

    Search

    find Keyword "hydroxyapatite" 40 results
    • TISSUE ENGINEERING STUDY ON CHITOSAN-GELATIN / HYDROXYAPATITE COMPOSITE SCAFFOLDS——OSTEOBLASTS CULTURE

      Objective To investigate the behavior of rat calvarial osteoblasts cultured on chitosan-gelatin/hydroxyapatite (CSGel/HA) composite scaffolds. Methods The rat calvarial osteoblasts (the 3rd passage) were seeded at a density of 1.01×106 cells/ml onto the CS-Gel/HA composite scaffolds having porosity 85.20%, 90.40% and 95.80%. Cell number was counted after cultured for 3 days,1 week, 2 weeks and 3 weeks. Cell proliferation, bone-like tissue formation, and mineralization were separately detected by HE, von Kossa histological stainingtechniques. Results The CS-Gel/HA composite scaffolds supported the attachmentof seeded rat calvarial osteoblasts. Cells proliferated faster in scaffold withhigher porosity 90.40% and 95.80% than scaffold with lower porosity 85.20%. The osteoblasts/scaffold constructs were feasible for mineral deposition, and bonelike tissue formation in 3 weeks. Conclusion This study suggests the feasibility of using CS-Gel/HA composite scaffolds for bone tissue engineering.

      Release date: Export PDF Favorites Scan
    • Application of Artificial Vertebral Body of Biomimetic NanoHydroxyapatite/Polyamide 66 Composite In Anterior Surgical Treatment of Thoracolumbar Fractures

      Objective To study the clinical effects of the artificial vertebral body of the biomimetic nanohydroxyapatite/polyamide 66 (nHA/PA66) compositefor the structural reconstruction and the height restoring of the vertebral body in the thoracolumbar fractures by the anterior surgical procedures. Methods From December 2003 to January 2006, 42 patients with thoracolumbar fractures received the anterior surgical procedures to decompress and reconstruct the spinal vertebral structure with the artificial vertebral body of the nHA/PA66 composite. Among the patients, there were 28 males and 14 females, aged 1767 years, averaged 43.6 years. The thoracolumbar fractures developed at T12 in 5 patients, at L1 in 17, at L2 in 14, and at L3 in 6. The height of the anterior border of thevertebral body amounted to 29%-47% of the vertebral body height, averaged 40.6%.The Cobb angle on the sagittal plane was 2138° averaged 27.6°. According tothe Frankel grading scale, the injuries to the nerves were as the following: Grade A in 7 patients, Grade B in 19, Grade C in 8, Grade D in 6, and Grade E in 2. Results All the 42 patients were followed up for 625 months. Among the patients, 36 were reconstructed almost based on the normal anatomic structure, and 6 were well reconstructed. The mean height of the anterior border of the vertebralbody was 40.6% of the vertebral body height before operation but 91.7% after operation. And the reconstructed height of the vertebra was maintained. The mean Cobb angle on the sagittal plane was 27.6°before operation but 13.4° after operation. All the patients had a recovery of the neurological function that had a 1grade or 2grade improvement except 7 patients who were still in Grade A and 2 patients who were in Grade D. The implant was fused 35 months after operation. No infection, nail break, bar/plate break or loosening of the internal fixation occurred. Conclusion The artificial vertebral body of the biomimetic nHA/PA66 composite can effectively restore the height and the structure of the vertebra, can be fused with the vertebral body to reconstruct the spinal structural stability effectively, and can be extensively used in the clinical practice.

      Release date:2016-09-01 09:20 Export PDF Favorites Scan
    • STUDY ON CHITOSAN-GELATIN/HYDROXYAPATITE COMPOSITE SCAFFOLDS--PREPARATION AND MORPHOLOGY

      OBJECTIVE: To prepare chitosan-gelatin/hydroxyapatite (CS-Gel/HA) composite scaffolds, and to investigate the influence of components and preparing conditions to their micromorphology. METHODS: The CS-Gel/HA composite scaffolds were prepared by phase-separation method. Micromorphology and porosity were detected by using scanning electron microscope and liquid displacement method respectively. RESULTS: Porous CS-Gel/HA composite scaffolds could be prepared by phase-separation method, and their density and porosity could be controlled by adjusting components and quenching temperature. CONCLUSION: The study suggests the feasibility of using CS-Gel/HA composite scaffolds for the transplantation of autogenous osteoblasts to regenerate bone tissue.

      Release date:2016-09-01 10:21 Export PDF Favorites Scan
    • APPLICATION OF NANO-HYDROXYAPATITE/POLYAMIDE 66 CAGE IN RECONSTRUCTION OF SPINAL STABILITY AFTER RESECTION OF SPINAL TUMOR

      Objective To evaluate the security and effectiveness of nano-hydroxyapatite/polyamide 66 (n-HA/PA66) cage in reconstruction of spinal stabil ity after resection of spinal tumor. Methods Between January 2008 and December2009, 11 patients with spinal tumor underwent surgical resection and strut graft with n-HA/PA66 cage. There were 6 males and 5 females with an average age of 44.5 years (range, 16-61 years). The average disease duration was 6.8 months (range, 2-14 months). The locations of lesions included cervical spine (2 cases), thoracic spine (6 cases), and lumbar spine (3 cases). Among them, there were 5 metastatic carcinomas, 2 giant cell tumors, 1 osteoblastsarcoma, 1 chondrosarcoma, and 2 non-Hodgkin lymphoma. According to Frankel criteria for nerve function classification, there were 1 case of grade A, 3 cases of grade B, 2 cases of grade C, 2 cases of grade D, and 3 cases of grade E. Results Incisions healed by first intention in all patients, no operative or postoperative compl ication occurred. Four cases of metastatic carcinoma died of primary disease during 5-9 months after operation. Seven cases were followed up 14.4 months on average (range, 10-18 months). All patients gained significant improvement of the neurological function at 3 months after operation. All cases obtained bone fusion and good spinal stabil ity without displacement and subsidence of the n-HA/PA66 cage. The intervertebral height of the adjacent segments was (110.5 ± 16.1) mm at 3 months after operation and (109.4 ± 16.2 ) mm at the final follow-up, showing significant differenecs when compared with the preoperative height [(97.5 ± 15.4) mm, P lt; 0.05], but no significant difference between 3 months after operation and the final follow-up. In 2 patients undergoing surgery via anterior approach, bilateral pleural effusion on both sides occurred and were cured after closed thoracic drainage. During the follow-up, 2 cases (1 chondrosarcoma and 1 giant cell tumor) relapsed and underwent reoperations. Conclusion n-HA/PA66 cage can provide satisfactory bone fusion and ideal spinal stabil ity without increasing the risk of recurrence and compl ications during the surgical treatment of spinal tumors. It is an idealselection for reconstruction of spinal stability.

      Release date:2016-08-31 05:44 Export PDF Favorites Scan
    • The Preparation of Two Scaffolds for Tissue Engineering Rib and Comparison of Their Degradability

      Objective Choose polylactide-co-glycolide/hydroxyapatite (PLGA/HA) and porous phosphate calcium (PPC) as the object that we will study, compare their degradabality and choose one as a suitable scaffold for rib reconstruction. Methods All the experiments were divided into PLGA/HA group and CPC group. Degradabality experiment in exvivo: put the two scaffold which have the same size into 0.9% NaCl, keep sterile, then put the container into warm cage,get out and weigh them in 2, 4, 8, 12 and 24 weeks, compare the different speed of the two scaffold. Degradability experiment in vivo: put the two scaffold which have the same size under the skin of the rabbit, and weigh them in 2, 4, 8, 12 and 24 weeks, the tissue around the scaffold was examinzed by HE and the scaffold was examined by electron scanning microscope. Results Micro-CT and Scanning electron microscopy shows that CPC group had better structure (1101.2228±0.6184 mg/ccm vs. 1072.5523±0.7442 mg/ccm)and porosity(70.26%±0.45% vs.72.82%±0.51%)than PLGA/HA group; The result of degradabality experiment in vitro shows that the speed of the two scaffolds was slow. It is at 24 weeks that the degradability is obvious,and the PLGA/HA group degraded a lot which was 60%. The result of degradabality experiment in vivo shows that the speed of degradabality of PLGA/HA group was faster than that is in the 0.9% Nacl, also was faster than that of CPC group which was 96%.The reponse of tissue around the PLGA/HA was more sever than that of CPC group which is in favour of the growth of cells. Conclusion As for the reconstruction of large defect of rib, CPC is more suitable than PLGA/HA.

      Release date:2016-08-30 06:06 Export PDF Favorites Scan
    • A STUDY ON NANOHYDROXYAPATITECHITOSAN SCAFFOLD FOR BONE TISSUE ENGINEERING

      Objective To fabricate a nanohydroxyapatite-chitosan(nano-HA-CS) scaffold with high porosity by a simple and effective technique and to evaluate the physical and chemical properties and the cytocompatibility of the composite scaffold. Methods The threedimensional nano-HA-CS scaffolds with high porosity were prepared by the in situ hybridization-freeze-drying method. The microscopic morphology and components of the composite scaffolds were analyzed by the scanning electron microscopy (SEM), the transmission electron microscopy(TEM), the X-ray diffraction(XRD)examination, and the Fourier transformed infrared spectroscopy(FTIR). The calvarial osteoblasts were isolated from the neonatal Wistar rats. The serial subcultured cells (3rd passage) were respectively seeded onto the nanoHACS scaffold and the CS scaffold, and then were cocultured for 2, 4, 6 and 8 hours. At each time point,four specimens from each matrix were taken to determine the celladhesion rate. The cell morphology was observed by the histological staining and SEM. Results The macroporous nanoHACS scaffolds had a feature of high porosity with a pore diameter from 100 to 500 μm (mostly 400500 μm). The scaffolds had a high interval porosity; however, the interval porosity was obviously decreased and the scaffold density was increased with an increase in the contents of CS and HA. The SEM and TEM results showed that the nanosized HA was synthesized and was distributed on the pore walls homogeneously and continuously. The XRD and FTIR results showed that the HA crystals were carbonatesubstituded and not wellcrystallized. The cytocompatibility test showed that the seeded osteoblasts could adhere the scaffolds, proliferating and producing the extracellular matrix on the scaffolds. The adherence rate for the nanoHACS scaffolds was obviously higher than that for the pure CS scaffolds. Conclusion The nano-HA-CS scaffolds fabricated by the in situ hybridization-freeze-drying method have a good physical and chemical properties and a good cytocompatibility; therefore, this kind of scaffolds may be successfully used in the bone tissue engineering.

      Release date:2016-09-01 09:22 Export PDF Favorites Scan
    • Study of vascularization of hydroxyapatite/tricalcium phosphate biomaterials implanted in mice during osteoinduction

      This study aims to explore the vascularization of hydroxyapatite/tricalcium phosphate (HA/TCP) biomaterials implanted in mice during osteoinduction. The HA/TCP biomaterials were implanted in muscle of mice, and 2, 4, 6, 8, 10 and 12 weeks after the implantation, the materials were harvested to prepare serial sections and hematoxylin-eosin (HE) staining. The process of vascularization was dynamically described, and the area percentage of neovascularization was quantitatively analyzed. The results showed that neovascularization formation was a continuous and dynamic process. The neovascularization appeared largely in the first two weeks, with a rising trend in week 4, reached peak in week 6, and gradually reduced in week 8. The results provide ideas for improving the success rate of bone tissue engineering, and indicate the mechanism of osteoinduction.

      Release date:2017-04-01 08:56 Export PDF Favorites Scan
    • Comparison of nano-hydroxyapatite/polyamide 66 bioactive support and autologous iliac bone in bone grafting and fusion for elderly patients with lumbar tuberculosis

      Objective To investigate the safety of nano-hydroxyapatite/polyamide 66 (n-HA/PA66) bioactive support in bone grafting and fusion for elderly patients with lumbar tuberculosis, and to analyze its effectiveness and advantages by comparing with autologous iliac bone grafting. Methods A retrospective analysis was performed on 48 elderly patients with lumbar tuberculosis who met the selection criteria between January 2017 and January 2020. The patients all underwent one-stage posterior pedicle screw internal fixation combined with anterior lesion removal and bone grafting and fusion, of which 23 cases applied n-HA/PA66 bioactive support+allogeneic bone graft (n-HA/PA66 group) and 25 cases applied autologous iliac bone graft (autologous iliac bone group). There was no significant difference between the two groups in gender, age, bone density, disease duration, lesion segment, and preoperative pain visual analogue scale (VAS) score, Japanese Orthopaedic Association (JOA) score, and Cobb angle (P>0.05). The operation time, intraoperative blood loss, and postoperative complications, as well as the VAS score, JOA score, American Spinal Injury Association (ASIA) spinal cord injury grading, Cobb angle, and bone fusion were recorded and compared between the two groups. Results The operations were completed successfully in both groups. n-HA/PA66 group had significantly less operation time and intraoperative blood loss than the autologous iliac bone group (P<0.05). All patients were followed up 12-24 months, with an average of 15.7 months. And the difference in follow-up time between the two groups was not significant (P>0.05). Postoperative complications occurred in 3 cases (13%) in the n-HA/PA66 group and 10 cases (40%) in the autologous iliac group, and the difference in the incidence of complications between the two groups was significant (χ2=4.408, P=0.036). The postoperative VAS scores and JOA scores significantly improved when compared with the preoperative scores in both groups (P<0.05), and the difference was significant (P<0.05) between 2 weeks after operation and the last follow-up. The difference in VAS score at 2 weeks after operation was significant between the two groups (P<0.05), and there was no significant difference (P>0.05) at the other time points. At last follow-up, according to the ASIA grading, the effective improvement rate was 86% (18/21) in the n-HA/PA66 group and 90% (18/20) in the autologous iliac group, with no significant difference (χ2=0.176, P=0.675). Imaging review showed that grade Ⅰ bony fusion was obtained in both groups, and the fusion time of bone graft in the n-HA/PA66 group was significantly longer than that in the autologous iliac bone group (P<0.05). There was no significant difference in the Cobb angle at each time point between the two groups (P>0.05). No recurrence of tuberculosis, loosening or fracture of the internal fixator, or displacement of the bone graft was observed during follow-up. Conclusion In elderly patients with lumbar spine tuberculosis, the n-HA/PA66 bioactive support combined with allogeneic bone graft can effectively restore and maintain the fusion segment height and physiological curvature of the lumbar spine, and the fusion rate of bone graft is similar to that of autologous iliac bone, which can achieve better effectiveness.

      Release date:2022-03-22 04:55 Export PDF Favorites Scan
    • THE EXPERIMENTAL STUDY OF CULTURE OF PERIOSTEAL OSTEOBLAST ON BIOACTIVE MATERIALS

      Abstract A new type of artificial material could possibly be produced by combination of osteoblast with bioactive material in culture, and thus, make the material "alive" . To study the behavior of osteoblast cultured with bioactive materials, the osteoblasts were isolated from the periosteum of Newzeland Rabbits tibia, and cultured in RPMI1640 medium. After 13 subcultures, the cells were identified as osteoblast in vitro by electron microscope, AKP activity and detection of mineral deposition ability. The osteoblasts were subcultured with three bioactive materials: bioactive glass ceramics (BGC), hydroxyapatite (HA), and double phase hydroxyapatite (HA/TCP). After incubationfor 48 hours, scan electron microscope, 3H-TDR, XRD, RS and EDXAwere performed. The results showed that the osteoblasts grew on the HA/TCR had a higher proliferation rate and better osteoblastoid shape than those grew on BCG and HA. Themechanism of the growth of osteoblasts on bioactive materials was discussed, and the factors influencing the growth of osteoblast were analyzed.

      Release date:2016-09-01 11:11 Export PDF Favorites Scan
    • AN EXPERIMENTAL STUDY ON RECOMBINANT ARTIFICIAL BONE SUBSTITUTE FOR REPAIRING SEGMENTAL BONE DEFECT IN RABBITS

      Objective To investigate the ability of repairing bone defect with the compound of recombinant human insulinlike growth factor 1 (rhIGF-1), coralline hydroxyapatite(CHA) and autogeneous red bone marrow(ARBM), and to study the feasibility of the compounds being used as bone substitute materials. Methods Bilateral radius bone defects(11 mm in length) were created in 54 Chinese rabbits,which were randomly divided into 3 groups, and two different materials were randomly transplanted into the bilateral defects:in group 1, with material A(rhIGF-1/CHA/ARBM) and material B(CHA/ARBM); in group 2, with material C(rhIGF-1/CHA) and material D(CHA); in group 3, with E(autograft) and F(no implant) as controls. At 2, 4, 8 and 12 weeks, the effects were assessed by X-ray andimage analysis, biomechanics(at 12 weeks), as well as histological observation. Results X-ray and image analysis showed that material A of group 1was significantly superior to any other materials(P<0.01). Antibending biomechanic detection showed that material A and Ewas significantly superior to the other materials(Plt;0.01), but no significant difference was found between A and E in the 12th week(Pgt;0.05). And by histological observation, in analogical bone morphological progress, materials C and D obviously inferior to materials A, B and E, but there was no significant difference between materials C and D. F had no evidence of new bone rebridging. Conclusion The recombinant compound CHA/ARBM(rhIGF-1),which posseses the potential ability of osteogenesis,osteoconduction and osteoinduction for bone defect repairing,can serve as a new type of autogenous bone substitute material.

      Release date:2016-09-01 09:28 Export PDF Favorites Scan
    4 pages Previous 1 2 3 4 Next

    Format

    Content

  • <table id="gigg0"></table>
  • 松坂南