As an important component of the event related potential (ERP), late positive potential (LPP) is an ideal component for studying emotion regulation. This study was focused on processing and analysing the LPP component of the emotional cognitive reappraisal electroencephalogram (EEG) signal. Firstly, we used independent component analysis (ICA) algorithm to remove electrooculogram, electromyogram and some other artifacts based on 16 subjects' EEG data by using EGI 64-channal EEG acquisition system. Secondly, we processed feature extraction of the EEG signal at Pz electrode by using one versus the rest common spatial patterns (OVR-CSP) algorithm. Finally, the extracted LPP component was analysed both in time domain and spatial domain. The results indicated that ① From the perspective of amplitude comparison, the LPP amplitude, which was induced by cognitive reappraisal, was much higher than the amplitude under the condition of watching neural stimuli, but lower than the amplitude under condition of watching negative stimuli; ② from the perspective of time process, the difference between cognitive reappraisal and watching after processing with OVR-CSP algorithm was in the process of range between 0.3 s and 1.5 s; but the difference between cognitive reappraisal and watching after processing with averaging method was during the process between 0.3 s and 1.25 s. The results suggested that OVR-CSP algorithm could not only accurately extract the LPP component with fewer trials compared with averaging method so that it provided a better method for the follow-up study of cognitive reappraisal strategy, but also provide neurophysiological basis for cognitive reappraisal in emotional regulation.
Cough recognition provides important clinical information for the treatment of many respiratory diseases. A new Mel frequency cepstrum coefficient (MFCC) extracting method has been proposed on the basis of the distributional characteristics of cough spectrum. The whole frequency band was divided into several sub-bands, and the energy coefficient for each band was obtained by method of principle component analysis. Then non-uniform filter-bank in Mel frequency is designed to improve the extracting process of MFCC by distributing filters according to the spectrum energy coefficients. Cough recognition experiment using hidden Markov model was carried out, and the results showed that the proposed method could effectively improve the performance of cough recognition.
It is of great clinical significance in the differential diagnosis of primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM) because there are enormous differences between them in terms of therapeutic regimens. In this paper, we propose a system based on sparse representation for automatic classification of PCNSL and GBM. The proposed system distinguishes the two tumors by using of the different texture detail information of the two tumors on T1 contrast magnetic resonance imaging (MRI) images. First, inspired by the process of radiomics, we designed a dictionary learning and sparse representation-based method to extract texture information, and with this approach, the tumors with different volume and shape were transformed into 968 quantitative texture features. Next, aiming at the problem of the redundancy in the extracted features, feature selection based on iterative sparse representation was set up to select some key texture features with high stability and discrimination. Finally, the selected key features are used for differentiation based on sparse representation classification (SRC) method. By using ten-fold cross-validation method, the differentiation based on the proposed approach presents accuracy of 96.36%, sensitivity 96.30%, and specificity 96.43%. Experimental results show that our approach not only effectively distinguish the two tumors but also has strong robustness in practical application since it avoids the process of parameter extraction on advanced MRI images.
Automatic classification of different types of cough plays an important role in clinical. In the previous research of cough classification or cough recognition, traditional Mel frequency cepstrum coefficients (MFCC) which extracts feature mainly from low frequency band is usually used as feature expression. In this paper, by analyzing the distributions of spectral energy of dry/wet cough, it is found that spectral difference of two types of cough exits mainly in middle frequency band and high frequency band. To better reflect the spectral difference of dry cough and wet cough, an improved method of extracting reverse MFCC is proposed. In this method, reverse Mel filter-bank in which filters are allocated in reverse Mel scale is adopted and is improved by placing filters only in the frequency band with high spectral energy. As a result, features are mainly extracted from the frequency band where two types of cough show both high spectral energy and distinguished difference. Detailed process of accessing improved reverse MFCC was introduced and hidden Markov models trained by 60 dry cough and 60 wet cough were used as cough classification model. Classification experiment results for 120 dry cough and 85 wet cough showed that, compared to traditional MFCC, better classification performance was achieved by the proposed method and the total classification accuracy was raised from 89.76% to 93.66%.
Due to the sparsity of brain encoding, the neural ensemble signals recorded by microelectrode arrays contain a lot of noise and redundant information, which could reduce the stability and precision of decoding of motion intent. To solve this problem, we proposed a decoding method based on partial least squares (PLS) feature extraction in our study. Firstly, we extracted the features of spike signals using the PLS, and then classified them with support vector machine (SVM) classifier, and decoded them for motion intent. In this study, we decoded neural ensemble signals based on plus-maze test. The results have shown that the proposed method had a better stability and higher decoding accuracy, due to the PLS combined with classification model which overcame the shortcoming of PLS regression that was easily affected by accumulated effect of noise. Meanwhile, the PLS method extracted fewer features with more useful information in comparison with common feature extraction method. The decoding accuracy of real data sets were 93.59%, 84.00% and 83.59%, respectively.
Electroencephalography (EEG) signals are strongly correlated with human emotions. The importance of nodes in the emotional brain network provides an effective means to analyze the emotional brain mechanism. In this paper, a new ranking method of node importance, weighted K-order propagation number method, was used to design and implement a classification algorithm for emotional brain networks. Firstly, based on DEAP emotional EEG data, a cross-sample entropy brain network was constructed, and the importance of nodes in positive and negative emotional brain networks was sorted to obtain the feature matrix under multi-threshold scales. Secondly, feature extraction and support vector machine (SVM) were used to classify emotion. The classification accuracy was 83.6%. The results show that it is effective to use the weighted K-order propagation number method to extract the importance characteristics of brain network nodes for emotion classification, which provides a new means for feature extraction and analysis of complex networks.
Neurofeedback, as an alternative treatment method of behavioral medicine, is a technique which translates the electroencephalogram (EEG) signals to styles as sounds or animation to help people understand their own physical status and learn to enhance or suppress certain EEG signals to regulate their own brain functions after several repeated trainings. This paper develops a neurofeedback system on the foundation of brain-computer interface technique. The EEG features are extracted through real-time signal process and then translated to feedback information. Two feedback screens are designed for relaxation training and attention training individually. The veracity and feasibility of the neurofeedback system are validated through system simulation and preliminary experiment.
Cardiotocography (CTG) is a commonly used technique of electronic fetal monitoring (EFM) for evaluating fetal well-being, which has the disadvantage of lower diagnostic rate caused by subjective factors. To reduce the rate of misdiagnosis and assist obstetricians in making accurate medical decisions, this paper proposed an intelligent assessment approach for analyzing fetal state based on fetal heart rate (FHR) signals. First, the FHR signals from the public database of the Czech Technical University-University Hospital in Brno (CTU-UHB) was preprocessed, and the comprehensive features were extracted. Then the optimal feature subset based on the k-nearest neighbor (KNN) genetic algorithm (GA) was selected. At last the classification using least square support vector machine (LS-SVM) was executed. The experimental results showed that the classification of fetal state achieved better performance using the proposed method in this paper: the accuracy is 91%, sensitivity is 89%, specificity is 94%, quality index is 92%, and area under the receiver operating characteristic curve is 92%, which can assist clinicians in assessing fetal state effectively.
The brain computer interface (BCI) can be used to control external devices directly through electroencephalogram (EEG) information. A multi-linear principal component analysis (MPCA) framework was used for the limitations of tensor form of multichannel EEG signals processing based on traditional principal component analysis (PCA) and two-dimensional principal component analysis (2DPCA). Based on MPCA, we used the projection of tensor-matrix to achieve the goal of dimensionality reduction and features exaction. Then we used the Fisher linear classifier to classify the features. Furthermore, we used this novel method on the BCI competitionⅡdataset 4 and BCI competitionⅣdataset 3 in the experiment. The second-order tensor representation of time-space EEG data and the third-order tensor representation of time-space-frequency EEG data were used. The best results that were superior to those from other dimensionality reduction methods were obtained by much debugging on parameter P and testQ. For two-order tensor, the highest accuracy rates could be achieved as 81.0% and 40.1%, and for three-order tensor, the highest accuracy rates were 76.0% and 43.5%, respectively.
Early screening based on computed tomography (CT) pulmonary nodule detection is an important means to reduce lung cancer mortality, and in recent years three dimensional convolutional neural network (3D CNN) has achieved success and continuous development in the field of lung nodule detection. We proposed a pulmonary nodule detection algorithm by using 3D CNN based on a multi-scale attention mechanism. Aiming at the characteristics of different sizes and shapes of lung nodules, we designed a multi-scale feature extraction module to extract the corresponding features of different scales. Through the attention module, the correlation information between the features was mined from both spatial and channel perspectives to strengthen the features. The extracted features entered into a pyramid-similar fusion mechanism, so that the features would contain both deep semantic information and shallow location information, which is more conducive to target positioning and bounding box regression. On representative LUNA16 datasets, compared with other advanced methods, this method significantly improved the detection sensitivity, which can provide theoretical reference for clinical medicine.