• <table id="gigg0"></table>
  • west china medical publishers
    Keyword
    • Title
    • Author
    • Keyword
    • Abstract
    Advance search
    Advance search

    Search

    find Keyword "extracellular matrix" 25 results
    • APPLICATION AND RESEARCH PROGRESS OF BIO-DERIVED HYDROGELS IN TISSUE ENGINEERING

      ObjectiveTo review the properties of bio-derived hydrogels and their application and research progress in tissue engineering. MethodsThe literature concerning the biol-derived hydrogels was extensively reviewed and analyzed. ResultsBio-derived hydrogels can be divided into single-component hydrogels (collagen,hyaluronic acid,chitosan,alginate,silk fibroin,etc.) and multi-component hydrogels[Matrigel,the extract of extracellular matrix (ECM),and decellularized ECM].They have favorable biocompatibility and bioactivity because they are mostly extracted from the ECM of biological tissue.Among them,hydrogels derived from decellularized ECM,whose composition and structure are more in line with the requirements of bionics,have incomparable advantages and prospects.This kind of scaffold is the closest to the natural environment of the cell growth. ConclusionBio-derived hydrogels have been widely used in tissue engineering research.Although there still exist many problems,such as the poor mechanical properties,rapid degradation,the immunogenicity or safety,vascularization,sterilization methods,and so on,with the deep-going study of optimization mechanism,desirable bio-derived hydrogels could be obtained,and thus be applied to clinical application.

      Release date: Export PDF Favorites Scan
    • Research progress in treatment of knee osteoarthritis by paracrine effect of stem cells

      ObjectiveTo review the advances in utilizing paracrine effect of stem cells in knee osteoarthritis (OA) treatment.MethodsThe researches in applying stem cells derived conditioned medium, extracellular matrix, exosomes, and microvesicles in knee OA treatment and cartilage repair were reviewed and analyzed.ResultsThe satisfying outcomes of using different products of stem cells paracrine effect in knee OA condition as well as cartilage defect is revealed in studies in vitro and in vivo. The mechanism including suppressing the intraarticular inflammation, the apoptosis of chondrocytes, and the degradation of cartilage matrix, while enhancing the synthesis of cartilage matrix, the differentiation of in-situ stem cells into chondrocytes and the migration to the affected area. The effectiveness can be further improved supplemented with the tissue engineering methods or gene modification.ConclusionCompared with the traditional stem cell therapy, applying the products from paracrine effect of stem cells in knee OA treatment is more economical and safer, presenting great potential in clinical practice.

      Release date:2019-11-21 03:35 Export PDF Favorites Scan
    • Preparation of rat uterine decellularized scaffold and extracellular matrix hydrogel

      The chemical extraction method was used to prepare the rat uterine decellularized scaffolds, and to investigate the feasibility of preparing the extracellular matrix (ECM) hydrogel. The rat uterus were collected and extracted by 1%sodium dodecyl sulfate (SDS), 3% TritonX-100 and 4% sodium deoxycholate (SDC) in sequence. Scanning electron microscopy, histochemical staining and immunohistochemistry was used to assess the degree of decellularization of rat uterine scaffold. The prepared decellularized scaffold was digested with pepsin to obtain a uterine ECM hydrogel, and the protein content of ECM was determined by specific ELISA kit. Meanwhile, the mechanical characteristic of ECM hydrogel was measured. The results showed that the chemical extraction method can effectively remove the cells effectively in the rat uterine decellularized scaffold, with the ECM composition preserved completely. ECM hydrogel contains a large amount of ECM protein and shows a good stability, which provides a suitable supporting material for the reconstruction of endometrium in vitro.

      Release date:2018-04-16 09:57 Export PDF Favorites Scan
    • Research progress on the role and mechanism of extracellular matrix in aortic aneurysm and dissection

      Aortic aneurysm and dissection are critical cardiovascular diseases that threaten human life and health seriously. No pharmacological treatment can effectively prevent disease progression. The imbalance of aortic wall cells and non-cellular components leads to structural or functional degeneration of the aorta, which is a prerequisite for disease occurrence. As the important non-cellular component, extracellular matrix (ECM) is crucial to maintain the aortic structure, function, and homeostasis. Abnormal production of elastin and collagen, destruction of cross-linking between elastic fibers and collagen fibers, and the imbalance of metalloproteinase and inhibitors leads to excessive degradation of ECM proteins, all of which have destroyed the structure and function of aorta. It will provide more ideas for disease prevention and treatment by learning ECM proteins and their metabolic mechanism. Here, we focus on the ECM proteins that have been reported to be involved in aortic aneurysm and dissection, and discuss the regulatory mechanism of metalloproteinase and inhibitors.

      Release date:2024-09-20 12:30 Export PDF Favorites Scan
    • Research progress of decellularized extracellular matrix hydrogel for peripheral nerve injury

      Peripheral nerve injury (PNI) is a common neurological dysfunction. In clinical practice, autologous nerve transplantation is used to solve problems related to PNI, such as limited donor resources, neuroma formation and high donor incidence rate. Therefore, searching for new nerve regeneration materials has become a hot research topic. The decellularized extracellular matrix (dECM) hydrogel provides a scaffold for nerve regeneration by removing the cellular components in biological tissues, preserving the extracellular matrix, and is a potential therapeutic material for nerve regeneration. This article reviews the research progress of dECM hydrogel for PNI and looks forward to the clinical prospects of this research direction.

      Release date:2024-08-21 02:11 Export PDF Favorites Scan
    • Resveratrol regulate the extracellular matrix expression via Wnt/β-catenin pathway in nucleus pulposus cells

      ObjectiveTo investigate the regulatory effect of resveratrol (RES) on the extracellular matrix (ECM) expression of nucleus pulposus cells (NPC), and its relative molecular mechanism.MethodsTen patients receiving discectomy were collected, of which 5 patients were young with spinal burst fracture, classified as control group; the rest 5 patients were senile with lumbar disc herniation, classified as degenerative group. The nucleus pulposus tissue of 2 groups were collected, the in situexpression of β-catenin was detected by immunohistochemistry, and the protein expressions of collagen type Ⅱ and Aggrecan were detected by Western blot. The NPC were isolated and cultured from degenerative nucleus pulposus tissues. RES treated the third-passage NPC with (group B) or without IL-1β (group C), to further determine the protein expressions of collagen type Ⅱ and Aggrecan by Western blot, the unstimulated cells were set up as blank control group (group A). Moreover, NPC treated with small interfering RNA (siRNA) targeted silent SIRT1 or β-catenin were used to determine the protein and gene expressions of β-catenin and SIRT1 by Western blot and real-time fluorescence quantitative PCR. In addition, the third-passage NPC treated with complete medium (group 1), IL-1β (group 2), RES+IL-1β (group 3), and SIRT1-siRNA+RES+IL-1β (group 4) for 24 hours were used to detect the nuclear translocation of β-catenin by cell immunofluorescence staining. Finally, the third-passage NPC treated with complete medium (group Ⅰ), IL-1β (group Ⅱ), IL-1β+β-catenin-siRNA (group Ⅲ), IL-1β+RES (group Ⅳ), and IL-1β+RES+SIRT1-siRNA (group Ⅴ) for 24 hours were used to detect the protein expressions of collagen type Ⅱ and Aggrecan by Western blot.ResultsImmunohistochemical staining and Western blot detection showed that when compared with control group, the cell proportion of expression of β-catenin were significantly increased in degenerative group (t=4.616, P=0.010); the protein expression of β-catenin was also significantly increased and the protein expressions of collagen type Ⅱ and Aggrecan were significantly decreased (P<0.05). In cytology experiments, the protein expression of β-catenin in group B was significantly higher than that in groups A and C, and the protein expressions of collagen type Ⅱ and Aggrecan in group B were significantly lower than those in groups A and C (P<0.05). After transfection of siRNA, the protein expressions of SIRT1 and β-catenin significantly decreased (P<0.05). The results of cell immunofluorescence staining further confirmed that when compared with group 3, after the SIRT1 was silenced by siRNA in group 4, the attenuated nuclear translocation of β-catenin by RES treatment was aggravated. Western blot results showed that the protein expressions of collagen type Ⅱ and Aggrecan in group Ⅱ were significantly lower than those in group Ⅰ(P<0.05); after transfection of β-catenin-siRNA in group Ⅲ, the degradation of ECM by IL-1β was obviously inhibited, the protein expressions of collagen type Ⅱ and Aggrecan were significantly increased when compared with group Ⅱ (P<0.05); after transfection of SIRT1-siRNA in group Ⅴ, the protective effect of RES on the degradation of ECM was inhibited, the protein expressions of collagen type Ⅱ and Aggrecan were significantly decreased when compared with group Ⅳ (P<0.05).ConclusionRES regulates the ECM expression of NPC via Wnt/β-catenin signaling pathway, which provide a new idea for intervertebral disc degeneration disease treatment.

      Release date:2018-04-03 09:11 Export PDF Favorites Scan
    • Preparation and in vitro evaluation of tissue engineered osteochondral integration of multi-layered scaffold

      ObjectiveThe tissue engineered osteochondral integration of multi-layered scaffold was prepared and the related mechanical properties and biological properties were evaluated to provide a new technique and method for the repair and regeneration of osteochondral defect.MethodsAccording to blend of different components and proportion of acellular cartilage extracellular matrix of pig, nano-hydroxyapatite, and alginate, the osteochondral integration of multi-layered scaffold was prepared by using freeze-drying and physical and chemical cross-linking technology. The cartilage layer was consisted of acellular cartilage extracellular matrix; the middle layer was consisted of acellular cartilage extracellular matrix and alginate; and the bone layer was consisted of nano-hydroxyapatite, alginate, and acellular cartilage extracellular matrix. The biological and mechanics characteristic of the osteochondral integration of multi-layered scaffold were evaluated by morphology observation, scanning electron microscope observation, Micro-CT observation, porosity and pore size determination, water absorption capacity determination, mechanical testing (compression modulus and layer adhesive strength), biocompatibility testing [L929 cell proliferation on scaffold assessed by MTT assay, and growth of green fluorescent protein (GFP)-labeled Sprague Dawley rats’ bone marrow mesenchumal stem cells (BMSCs) on scaffolds].ResultsGross observation and Micro-CT observation showed that the scaffolds were closely integrated with each other without obvious discontinuities and separation. Scanning electron microscope showed that the structure of the bone layer was relatively dense, while the structure of the middle layer and the cartilage layer was relatively loose. The pore structures in the layers were connected to each other and all had the multi-dimensional characteristics. The porosity of cartilage layer, middle layer, and bone layer of the scaffolds were 93.55%±2.90%, 93.55%±4.10%, and 50.28%±3.20%, respectively; the porosity of the bone layer was significantly lower than that of cartilage layer and middle layer (P<0.05), but no significant difference was found between cartilage layer and middle layer (P>0.05). The pore size of the three layers were (239.66±35.28), (153.24±19.78), and (82.72±16.94) μm, respectively, showing significant differences between layers (P<0.05). The hydrophilic of the three layers were (15.14±3.15), (13.65±2.98), and (5.32±1.87) mL/g, respectively; the hydrophilic of the bone layer was significantly lower than that of cartilage layer and middle layer (P<0.05), but no significant difference was found between cartilage layer and middle layer (P>0.05). The compression modulus of the three layers were (51.36±13.25), (47.93±12.74), and (155.18±19.62) kPa, respectively; and compression modulus of the bone layer was significantly higher than that of cartilage layer and middle layer (P<0.05), but no significant difference was found between cartilage layer and middle layer (P>0.05). The osteochondral integration of multi-layered scaffold was tightly bonded with each layer. The layer adhesive strength between the cartilage layer and the middle layer was (18.21±5.16) kPa, and the layer adhesive strength between the middle layer and the bone layer was (16.73±6.38) kPa, showing no significant difference (t=0.637, P=0.537). MTT assay showed that L929 cells grew well on the scaffolds, indicating no scaffold cytotoxicity. GFP-labeled rat BMSCs grew evenly on the scaffolds, indicating scaffold has excellent biocompatibility.ConclusionThe advantages of three layers which have different performance of the tissue engineered osteochondral integration of multi-layered scaffold is achieved double biomimetics of structure and composition, lays a foundation for further research of animal in vivo experiment, meanwhile, as an advanced and potential strategy for osteochondral defect repair.

      Release date:2018-04-03 09:11 Export PDF Favorites Scan
    • Research progress of decellularized extracellular matrix in the field of tissue engineering in thoracic and cardiac surgery

      The extracellular matrix provides a unique tissue-specific microenvironment for resident cells, supporting the essential functions required for tissue architecture and biochemical signaling. Decellularized extracellular matrix (dECM) is designed to eliminate cells that mediate immunological rejection while preserving the native tissue structure and matrix functionality. dECM has attracted significant attention in tissue engineering applications and has evolved into a novel and increasingly sophisticated biomaterial. This article summarizes representative protocols for decellularization methods, explores the latest applications of decellularized tissue-derived materials and bioinks in the field of cardiothoracic surgery, analyzes the current challenges and issues confronting dECM, and discusses future perspectives for its development.

      Release date:2025-05-30 08:48 Export PDF Favorites Scan
    • Research Advances in Regeneration of Soft Tissue with Small Intestinal Submucosa

      Small intestinal submucosa (SIS) is a natural decellularized extracellular matrix material. Due to its excellent biocompatibility, unique biomechanical properties and biological activity, it has been widely used as a scaffold in regenerative medicine. This article reviews the recent progress in the characterization and medical application of SIS respectively. The specific biological properties of the SIS, as well as its interaction with cells, are highlighted. Some of the SIS products and clinical cases are also reviewed and discussed.

      Release date:2016-10-02 04:55 Export PDF Favorites Scan
    • Research progress in adipose tissue promoted wound healing

      ObjectiveTo summarize recent progress in adipose tissue acting as a more efficient and ideal therapy to facilitate wound repair and evaluate the therapeutic values of adipose tissue.MethodsThe related literature about adipose tissue for wound healing in recent years was reviewed and analyzed.ResultsEnormous studies focus on the capacity of adipose tissue to accelerate wound healing including cellular components, extracellular matrix, and paracrine signaling have been investigated.ConclusionAdipose tissue has generated great interest in recent years because of unique advantages such as abundant and accessible source, thriven potential to enhance the regeneration and repair of damaged tissue. However, there is still a need to explore the mechanism that adipose tissue regulates cellular function and tissue regeneration in order to facilitate clinical application of adipose tissue in wound healing.

      Release date:2019-06-04 02:16 Export PDF Favorites Scan
    3 pages Previous 1 2 3 Next

    Format

    Content

  • <table id="gigg0"></table>
  • 松坂南