• <table id="gigg0"></table>
  • west china medical publishers
    Keyword
    • Title
    • Author
    • Keyword
    • Abstract
    Advance search
    Advance search

    Search

    find Keyword "evoked potential" 35 results
    • Noise attenuation analysis on auditory evoked potential based on maximum length sequence

      The maximum length sequence (m-sequence) has been successfully used to study the linear/nonlinear components of auditory evoked potential (AEP) with rapid stimulation. However, more study is needed to evaluate the effect of the m-sequence order in terms of the noise attenuation performance. This study aimed to address this issue using response-free electroencephalogram (EEG) and EEGs with nonlinear AEPs. We examined the noise attenuation ratios to evaluate the noise variation for the calculations of superimposed averaging and cross-correlation, respectively, which constitutes the main process in the deconvolution method using the dataset of spontaneous EEGs to simulate the cases of different orders (order 5 to 12) of m-sequences. And an experiment using m-sequences of order 7 and 9 was performed in true cases with substantial linear and nonlinear AEPs. The results demonstrate that the noise attenuation ratio is well agreed with the theoretical value derived from the properties of m-sequences on the random noise condition. The comparison of waveforms for AEP components from two m-sequences showed high similarity suggesting the insensitivity of AEP to the m-sequence order. This study provides a more comprehensive solution to the selection of m-sequences which will facilitate the feasible application on the nonlinear AEP with m-sequence method.

      Release date:2018-04-16 09:57 Export PDF Favorites Scan
    • HISTOLOGICAL AND ELECTROPHYSIOLOGIC CHANGES OF INJURY OF DORSAL ROOT GANGLIA

      Injury of dorsal root ganglia (DRG) may cause sensory and motor dysfunction. In order to investigate the changes of somato-sensory evoked potential (SEP) and histological characteristics of DRG in different causes and different periods of injury, fifty-two rabbits were chosed to build the models. The rabbits were divided into 4 groups: Control group (n = 4); mechanical compressing group (n = 16); inflammatory injury group (n = 16); and treatment group (2% lidocaine with hydroprednisone was administered locally, n = 16). After one to eight weeks, SEP was determined and samples of DRG were obtained to observe the histological and ultrastructural changes every week. The result showed that the gap junction of microvascular endothelium in DRG had been destroyed by the mechanical compression was the major cause of the vessel permeability increasing. The increasing of endothelial pinocytic vesicles transportation and widening of endothelial gap junction were the main causes of inflammatory irritation of DRG. The local infiltration with 2% lidocaine and hydroprednisone could obviously ameliorate inflammatory injury in DRG.

      Release date:2016-09-01 11:07 Export PDF Favorites Scan
    • A review of researches on decoding algorithms of steady-state visual evoked potentials

      Brain-computer interface (BCI) systems based on steady-state visual evoked potential (SSVEP) have become one of the major paradigms in BCI research due to their high signal-to-noise ratio and short training time required by users. Fast and accurate decoding of SSVEP features is a crucial step in SSVEP-BCI research. However, the current researches lack a systematic overview of SSVEP decoding algorithms and analyses of the connections and differences between them, so it is difficult for researchers to choose the optimum algorithm under different situations. To address this problem, this paper focuses on the progress of SSVEP decoding algorithms in recent years and divides them into two categories—trained and non-trained—based on whether training data are needed. This paper also explains the fundamental theories and application scopes of decoding algorithms such as canonical correlation analysis (CCA), task-related component analysis (TRCA) and the extended algorithms, concludes the commonly used strategies for processing decoding algorithms, and discusses the challenges and opportunities in this field in the end.

      Release date:2022-06-28 04:35 Export PDF Favorites Scan
    • STUDY ON RELATIONSHIP BETWEEN DIFFUSION TENSOR IMAGING AND VISUAL EVOKED POTENTIAL IN VISUAL PATHWAY OF NEUROMYELITIS OPTICA

      ObjectiveTo study the relationship between brain white matter fiber occult lesions and P100 wave latency of visual evoked potential (VEP) in neuromyelitis optica (NMO) patients by diffusion tensor imaging (DTI). MethodsTwenty patients with NMO who were treated between July 2008 and April 2009 were selected as the trial group. According to the VEP test, the latency of P100 wave was prolonged, the NMO patients were divided into VEP abnormal group (trial group 1) and VEP normal group (trial group 2). Twenty healthy adult volunteers served as the control group. The DTI examination in brain was done to measure the fractional anisotropy (FA) value of optic nerve (FAn), optic tract (FAt), and optic radiation (FAr);and the mean diffusivity (MD) value of optic nerve (MDn), optic tract (MDt), and optic radiation (MDr). The FA, MD, and P100 wave latency were compared between groups, and the correlation between MD, FA, and P100 wave latency of NMO were analyzed. ResultsIn the 20 NMO patients, 13 patients with VEP had prolonged bilateral P100 wave latency prolongation or no wave (trial group 1), and 7 patients had normal bilateral P100 wave latency (trial group 2). Compared with the trial group 2 and the control group, the FA values were significantly decreased, and the MD values were significantly increased in the trial group 1 (P<0.05). There was no significant difference in the FA and MD values between the trial group 2 and the control group (P>0.05). All FA (FAn, FAt, and FAr) values of each part of NMO patients were negatively correlated with the latency of P100 wave (P<0.05), all MD (MDn, MDt, and MDr) values were positively correlated with the latency of P100 wave (P<0.05). ConclusionDTI could show small pathylogical changes in the white matter fibers of visual pathway, and there is a correlation between DTI and VEP in NMO, suggesting that a more comprehensive assessment to the condition and prognosis can be made through the VEP in the clinical indicators.

      Release date: Export PDF Favorites Scan
    • A Wireless Smart Home System Based on Brain-computer Interface of Steady State Visual Evoked Potential

      Brain-computer interface (BCI) system is a system that achieves communication and control among humans and computers and other electronic equipment with the electroencephalogram (EEG) signals. This paper describes the working theory of the wireless smart home system based on the BCI technology. We started to get the steady-state visual evoked potential (SSVEP) using the single chip microcomputer and the visual stimulation which composed by LED lamp to stimulate human eyes. Then, through building the power spectral transformation on the LabVIEW platform, we processed timely those EEG signals under different frequency stimulation so as to transfer them to different instructions. Those instructions could be received by the wireless transceiver equipment to control the household appliances and to achieve the intelligent control towards the specified devices. The experimental results showed that the correct rate for the 10 subjects reached 100%, and the control time of average single device was 4 seconds, thus this design could totally achieve the original purpose of smart home system.

      Release date: Export PDF Favorites Scan
    • THE STEADY-STATE FLASH VEP IN OPTIC NEUROPATHY

      Steady-state flsash visual evoked potentials (SFVEPs) of 30 Hz were recorded for 46 normal subjects (89 eyes )and 35 patients (51 eyes )with optic neuropathy. The visual acuities of 58.8%affected eyes were less than 0.1. The recorded waveforms were analyzed by discrete Foruier transform (DTF). The amplitudes and phases of fundamental response component and second harmonic were abstracted as characteristic values of the waveform.The total abnormal ratio was 80. 4%. The abnormal types showed the reduced amplitudes,reduced amplitude with phase change, the phases changes, and flat wave. The advantages of SFVEPs in clinical application were discussed. (Chin J Ocul Fundus Dis,1994,10:213-215)

      Release date:2016-09-02 06:34 Export PDF Favorites Scan
    • BINOCULAR DISPARITY IN VEP RELATE TO STEREOPSIS

      We have utilized the binocular flat and stereoscopic pattern to record visual evoked potentials (VEP) in normal and strabismic subjects. The aim was to find an electrophysiological correlation with the degree of binocular interaction in these subjects.The perception as tridimensional or flat derived from the disparity obtained with polaroid filters placed in front of the eyes. In normal subjects, the results demonstrated a significant increase of VEP amplitude during tridimensional perception of the pattern. In strabismic subjects the electrophysiological response were not correlated with the binocular conditions. The findings in the present study suggest that the binocular disparity in VEP examination is a useful technique and a better objective index for evaluating stereoscopic function than the psychophysical technique. (Chin J Ocul Fundus Dis,1992,8:10-13)

      Release date:2016-09-02 06:36 Export PDF Favorites Scan
    • Research on feature classification of lower limb motion imagination based on electrical stimulation to enhance rehabilitation

      Motor imaging therapy is of great significance to the rehabilitation of patients with stroke or motor dysfunction, but there are few studies on lower limb motor imagination. When electrical stimulation is applied to the posterior tibial nerve of the ankle, the steady-state somatosensory evoked potentials (SSSEP) can be induced at the electrical stimulation frequency. In order to better realize the classification of lower extremity motor imagination, improve the classification effect, and enrich the instruction set of lower extremity motor imagination, this paper designs two experimental paradigms: Motor imaging (MI) paradigm and Hybrid paradigm. The Hybrid paradigm contains electrical stimulation assistance. Ten healthy college students were recruited to complete the unilateral movement imagination task of left and right foot in two paradigms. Through time-frequency analysis and classification accuracy analysis, it is found that compared with MI paradigm, Hybrid paradigm could get obvious SSSEP and ERD features. The average classification accuracy of subjects in the Hybrid paradigm was 78.61%, which was obviously higher than the MI paradigm. It proves that electrical stimulation has a positive role in promoting the classification training of lower limb motor imagination.

      Release date:2021-08-16 04:59 Export PDF Favorites Scan
    • Performance evaluation of a wearable steady-state visual evoked potential based brain-computer interface in real-life scenario

      Brain-computer interface (BCI) has high application value in the field of healthcare. However, in practical clinical applications, convenience and system performance should be considered in the use of BCI. Wearable BCIs are generally with high convenience, but their performance in real-life scenario needs to be evaluated. This study proposed a wearable steady-state visual evoked potential (SSVEP)-based BCI system equipped with a small-sized electroencephalogram (EEG) collector and a high-performance training-free decoding algorithm. Ten healthy subjects participated in the test of BCI system under simplified experimental preparation. The results showed that the average classification accuracy of this BCI was 94.10% for 40 targets, and there was no significant difference compared to the dataset collected under the laboratory condition. The system achieved a maximum information transfer rate (ITR) of 115.25 bit/min with 8-channel signal and 98.49 bit/min with 4-channel signal, indicating that the 4-channel solution can be used as an option for the few-channel BCI. Overall, this wearable SSVEP-BCI can achieve good performance in real-life scenario, which helps to promote BCI technology in clinical practice.

      Release date:2025-06-23 04:09 Export PDF Favorites Scan
    • Indoor simulation training system for brain-controlled wheelchair based on steady-state visual evoked potentials

      Brain-controlled wheelchair (BCW) is one of the important applications of brain-computer interface (BCI) technology. The present research shows that simulation control training is of great significance for the application of BCW. In order to improve the BCW control ability of users and promote the application of BCW under the condition of safety, this paper builds an indoor simulation training system based on the steady-state visual evoked potentials for BCW. The system includes visual stimulus paradigm design and implementation, electroencephalogram acquisition and processing, indoor simulation environment modeling, path planning, and simulation wheelchair control, etc. To test the performance of the system, a training experiment involving three kinds of indoor path-control tasks is designed and 10 subjects were recruited for the 5-day training experiment. By comparing the results before and after the training experiment, it was found that the average number of commands in Task 1, Task 2, and Task 3 decreased by 29.5%, 21.4%, and 25.4%, respectively (P < 0.001). And the average number of commands used by the subjects to complete all tasks decreased by 25.4% (P < 0.001). The experimental results show that the training of subjects through the indoor simulation training system built in this paper can improve their proficiency and efficiency of BCW control to a certain extent, which verifies the practicability of the system and provides an effective assistant method to promote the indoor application of BCW.

      Release date:2020-08-21 07:07 Export PDF Favorites Scan
    4 pages Previous 1 2 3 4 Next

    Format

    Content

  • <table id="gigg0"></table>
  • 松坂南