• <table id="gigg0"></table>
  • west china medical publishers
    Keyword
    • Title
    • Author
    • Keyword
    • Abstract
    Advance search
    Advance search

    Search

    find Keyword "electroencephalography" 26 results
    • Sampling intervals dependent feature extraction for state transfer networks of epileptic signals

      Epileptic seizures and the interictal epileptiform discharges both have similar waveforms. And a method to effectively extract features that can be used to distinguish seizures is of crucial importance both in theory and clinical practice. We constructed state transfer networks by using visibility graphlet at multiple sampling intervals and analyzed network features. We found that the characteristics waveforms in ictal periods were more robust with various sampling intervals, and those feature network structures did not change easily in the range of the smaller sampling intervals. Inversely, the feature network structures of interictal epileptiform discharges were stable in range of relatively larger sampling intervals. Furthermore, the feature nodes in networks during ictal periods showed long-term correlation along the process, and played an important role in regulating system behavior. For stereo-electroencephalography at around 500 Hz, the greatest difference between ictal and the interictal epileptiform occurred at the sampling interval around 0.032 s. In conclusion, this study effectively reveals the correlation between the features of pathological changes in brain system and the multiple sampling intervals, which holds potential application value in clinical diagnosis for identifying, classifying, and predicting epilepsy.

      Release date:2024-12-27 03:50 Export PDF Favorites Scan
    • Three-dimensional convolutional neural network based on spatial-spectral feature pictures learning for decoding motor imagery electroencephalography signal

      The brain-computer interface (BCI) based on motor imagery electroencephalography (EEG) shows great potential in neurorehabilitation due to its non-invasive nature and ease of use. However, motor imagery EEG signals have low signal-to-noise ratios and spatiotemporal resolutions, leading to low decoding recognition rates with traditional neural networks. To address this, this paper proposed a three-dimensional (3D) convolutional neural network (CNN) method that learns spatial-frequency feature maps, using Welch method to calculate the power spectrum of EEG frequency bands, converted time-series EEG into a brain topographical map with spatial-frequency information. A 3D network with one-dimensional and two-dimensional convolutional layers was designed to effectively learn these features. Comparative experiments demonstrated that the average decoding recognition rate reached 86.89%, outperforming traditional methods and validating the effectiveness of this approach in motor imagery EEG decoding.

      Release date:2024-12-27 03:50 Export PDF Favorites Scan
    • Alterations of β-γ coupling of scalp electroencephalography during epilepsy

      Uncovering the alterations of neural interactions within the brain during epilepsy is important for the clinical diagnosis and treatment. Previous studies have shown that the phase-amplitude coupling (PAC) can be used as a potential biomarker for locating epileptic zones and characterizing the transition of epileptic phases. However, in contrast to the θ-γ coupling widely investigated in epilepsy, few studies have paid attention to the β-γ coupling, as well as its potential applications. In the current study, we use the modulation index (MI) to calculate the scalp electroencephalography (EEG)-based β-γ coupling and investigate the corresponding changes during different epileptic phases. The results show that the β-γ coupling of each brain region changes with the evolution of epilepsy, and in several brain regions, the β-γ coupling decreases during the ictal period but increases in the post-ictal period, where the differences are statistically significant. Moreover, the alterations of β-γ coupling between different brain regions can also be observed, and the strength of β-γ coupling increases in the post-ictal period, where the differences are also significant. Taken together, these findings not only contribute to understanding neural interactions within the brain during the evolution of epilepsy, but also provide a new insight into the clinical treatment.

      Release date: Export PDF Favorites Scan
    • Research on the effect of background music on spatial cognitive working memory based on cortical brain network

      Background music has been increasingly affecting people’s lives. The research on the influence of background music on working memory has become a hot topic in brain science. In this paper, an improved electroencephalography (EEG) experiment based on n-back paradigm was designed. Fifteen university students without musical training were randomly selected to participate in the experiment, and their behavioral data and the EEG data were collected synchronously in order to explore the influence of different types of background music on spatial positioning cognition working memory. The exact low-resolution brain tomography algorithm (eLORETA) was applied to localize the EEG sources and the cross-correlation method was used to construct the cortical brain function networks based on the EEG source signals. Then the characteristics of the networks under different conditions were analyzed and compared to study the effects of background music on people’s working memory. The results showed that the difference of peak periods after stimulated by different types of background music were mainly distributed in the signals of occipital lobe and temporal lobe (P < 0.05). The analysis results showed that the brain connectivity under the condition with background music were stronger than those under the condition without music. The connectivities in the right occipital and temporal lobes under the condition of rock music were significantly higher than those under the condition of classical music. The node degrees, the betweenness centrality and the clustering coefficients under the condition without music were lower than those under the condition with background music. The node degrees and clustering coefficients under the condition of classical music were lower than those under the condition of rock music. It indicates that music stimulation increases the brain activity and has an impact on the working memory, and the effect of rock music is more remarkable than that of classical music. The behavioral data showed that the response accuracy in the state of no music, classical music and rock music were 86.09% ± 0.090%, 80.96% ± 0.960% and 79.36% ± 0.360%, respectively. We conclude that background music has a negative impact on the working memory, for it takes up the cognitive resources and reduces the cognitive ability of spatial location.

      Release date:2020-10-20 05:56 Export PDF Favorites Scan
    • Analysis of clinical features, electroencephalogram characteristics and epileptogenic zone location of gelastic seizures

      ObjectiveTo explore the clinical features and EEG features of gelastic seizures, and analyze its value of lateral localization of epileptogenic area. MethodsAll patients with gelastic seizures admitted to the Sanbo Brain Hospital of Capital Medical University between January 2014 and December 2023 were reviewed and analyzed for history, symptomatology, imaging, electroencephalographic features and surgical protocols in patients who met the inclusion criteria and were followed up for at least 1 year, and surgical efficacy was assessed by using the Engel grading. ResultsA total of 51 patients with gelastic seizures were included, there were 32 (62.75%) males and 19 (37.25%) females, 21 (41.18%) with hypothalamic hamartomas (HH) and 30 (58.82%) with non-hypothalamic hamartomas. The age of onset was earlier in the HH group than in the non-HH group, with a median age of onset of 24.00 (0.00 ~ 96.00) and 78.00 (1.00 ~ 396.00) months (P<0.001). There are three types of laughter according to their characteristics: smiling or pleasant expressions, laughing out loud, crying or bitter laughter, with smiling or pleasant expressions being the most common (49.02%). Simple laughter is rare in all patients and is often accompanied by other manifestations such as autonomic symptoms, automatic movements, complex movements, and tonic seizures. Most of the HH group started with laughter whereas in the non-HH group laughter appeared mostly in the mid to late stages (P=0.007). Most of the HH group (57.14%) had preserved consciousness whereas most of the non-HH group (83.33%) had loss of consciousness (P=0.003). The interictal discharges in the HH group were mostly diffuse or multiregional, whereas those in the non-HH group were mostly regional (P=0.035). The onset of EEG during the seizure period in the HH group was mostly diffuse, whereas those in the non-HH group were mostly regional, mainly in the frontal and temporal regions, but there was no significant difference between the two groups (P=0.148). The non-HH group was mostly seen in those with definite lesions, and the most common type of lesion was FCD (focal cortical dysplasia, FCD). All patients enrolled in the group underwent surgical treatment, and stereoelectroencephalogram (SEEG) electrode implantation was performed in 13 cases in the HH group and in 17 cases in the non-HH group. 61.90% of the patients in the HH group had an Engel grade I, and 73.33% of the patients in the non-HH group had an Engel grade I. ConclusionsGelastic seizures has a complex neural network, with common causes other than hypothalamic hamartomas, and is most commonly seen in frontal or temporal lobe epilepsy, as well as in the insula or parietal lobe, with the most common type of lesion being FCD. The symptomatology, stage of onset, and electroencephalographic features of gelastic seizures can help in the differential diagnosis, and SEEG can help define the origin of the seizure and its diffusion pathway. The overall prognosis of surgical treatment was better in both the hypothalamic hamartomas and non-hypothalamic hamartomas groups.

      Release date:2025-05-08 09:41 Export PDF Favorites Scan
    • Feature Extraction of Motor Imagery Electroencephalography Based on Time-frequency-space Domains

      The purpose of using brain-computer interface (BCI) is to build a bridge between brain and computer for the disable persons, in order to help them to communicate with the outside world. Electroencephalography (EEG) has low signal to noise ratio (SNR), and there exist some problems in the traditional methods for the feature extraction of EEG, such as low classification accuracy, lack of spatial information and huge amounts of features. To solve these problems, we proposed a new method based on time domain, frequency domain and space domain. In this study, independent component analysis (ICA) and wavelet transform were used to extract the temporal, spectral and spatial features from the original EEG signals, and then the extracted features were classified with the method combined support vector machine (SVM) with genetic algorithm (GA). The proposed method displayed a better classification performance, and made the mean accuracy of the Graz datasets in the BCI Competitions of 2003 reach 96%. The classification results showed that the proposed method with the three domains could effectively overcome the drawbacks of the traditional methods based solely on time-frequency domain when the EEG signals were used to describe the characteristics of the brain electrical signals.

      Release date: Export PDF Favorites Scan
    • The analysis of insula lobe function based on the Stereo-electroencephalography

      ObjectiveTo understand the relationship between the anatomy and the function of the insula lobe cortex based on the stereo-electro encephalography (SEEG) by direct electric stimulation of the insula cortex performed in the patients who suffered from the refractory epilepsy. MethodsRetrospective review was performed on 12 individuals with refractory epilepsy who were diagnosed in the Department of Functional neurosurgery of RenJi Hospital from December 2013 to September 2015. We studied all the SEEG electrodes implanted in the brain with contacts in the insula cortex. Direct electric stimulation was given to gain the brain mapping of the insula. Results12 consecutive patients with refractory epilepsy were implanted SEEG electrodes into the insula cortex. In all, 176 contacts were in the insula cortex, and 154 were included. The main clinical manifestations obtained by the stimulation were somatosensory abnormalities, laryngeal constriction, dyspnea, nausea, flustered. While somatosensory symptoms were located in the posterior insula, visceral sensory symptoms distribute relatively in the anterior insula, and other symptoms were mainly in the central and anterior part. ConclusionsThe symptoms of the insula present mainly according to the anatomy, but some of them are mixed. In addition, the manifestations of the insula are usually complex and individually.

      Release date: Export PDF Favorites Scan
    • Research on the relationship between resting-state spontaneous electroencephalography and task-evoked electroencephalography

      In recent years, it has become a new direction in the field of neuroscience to explore the mode characteristics, functional significance and interaction mechanism of resting spontaneous electroencephalography (EEG) and task-evoked EEG. This paper introduced the basic characteristics of spontaneous EEG and task-evoked EEG, and summarized the core role of spontaneous EEG in shaping the adaptability of the nervous system. It focused on how the spontaneous EEG interacted with the task-evoked EEG in the process of task processing, and emphasized that the spontaneous EEG could significantly affect the performance of tasks such as perception, cognition and movement by regulating neural activities and predicting external stimuli. These studies provide an important theoretical basis for in-depth understanding of the principle and mechanism of brain information processing in resting and task states, and point out the direction for further exploring the complex relationship between them in the future.

      Release date:2025-06-23 04:09 Export PDF Favorites Scan
    • Fatigue feature extraction and classification algorithm of forehead single-channel electroencephalography signals

      Aiming at the problem that the feature extraction ability of forehead single-channel electroencephalography (EEG) signals is insufficient, which leads to decreased fatigue detection accuracy, a fatigue feature extraction and classification algorithm based on supervised contrastive learning is proposed. Firstly, the raw signals are filtered by empirical modal decomposition to improve the signal-to-noise ratio. Secondly, considering the limitation of the one-dimensional signal in information expression, overlapping sampling is used to transform the signal into a two-dimensional structure, and simultaneously express the short-term and long-term changes of the signal. The feature extraction network is constructed by depthwise separable convolution to accelerate model operation. Finally, the model is globally optimized by combining the supervised contrastive loss and the mean square error loss. Experiments show that the average accuracy of the algorithm for classifying three fatigue states can reach 75.80%, which is greatly improved compared with other advanced algorithms, and the accuracy and feasibility of fatigue detection by single-channel EEG signals are significantly improved. The results provide strong support for the application of single-channel EEG signals, and also provide a new idea for fatigue detection research.

      Release date:2024-10-22 02:33 Export PDF Favorites Scan
    • Application of stereoelectroencephalography in the refractory epilepsy related to periventricular nodular heterotopia

      ObjectiveTo investigate the application of stereoelectroencephalography (SEEG) in the refractory epilepsy related to periventricular nodular heterotopia (PNH). MethodsTen patients with drug-resistant epilepsy related to PNHs from Guangdong Sanjiu Brain Hospital and the First Affiliated Hospital of Jinan University from April 2017 to February 2021 were studied. Electrodes were implanted based on non-invasive preoperative evaluation. Then long-term monitoring of SEEG was carried out. The patterns of epileptogenic zone (EZ) were divided into four categories based on the ictal SEEG: A. only the nodules started; B. nodules and cortex synchronous initiation; C. the cortex initiation with early spreading to nodules; D. only cortex initiation. All patients underwent SEEG-guided radiofrequency thermocoagulation (RFTC), with a follow-up of at least 12 months. ResultsAll cases were multiple nodules. Four cases were unilateral and six bilateral. Eight cases were distributed in posterior pattern, and one in anterior pattern and one in diffused pattern, respectively. Seven patients had only PNH (pure PNH) and three patients were associated with other overlying cortex malformations (PNH plus). The EZ patterns of all cases were confirmed by the ictal SEEG: six patients were in pure type A, two patients were in pure type B, one patient in type A+B and one in type A+B+C, respectively. In eight patients SEEG-guided RF-TC was targeted only to PNHs; and in two patients RFTC was directed to both heterotopias and related cortical regions. The mean follow up was (33.4±14.0) months (12 ~ 58 months). Eight patients (in pure type A or type A included) were seizure free. Two patients were effective. None of the patients had significant postoperative complications or sequelae. ConclusionThe epileptic network of Epilepsy associated with nodular heterotopia may be individualized. Not all nodules are always epileptogenic, the role of each nodule in the epileptic network may be different. And multiple epileptic patterns may occur simultaneously in the same patient. SEEG can provide individualized diagnosis and treatment, be helpful to prognosis.

      Release date:2023-09-07 11:00 Export PDF Favorites Scan
    3 pages Previous 1 2 3 Next

    Format

    Content

  • <table id="gigg0"></table>
  • 松坂南