【Abstract】Objective To explore Toll-like receptor 4 (TLR4) expression and distribution in rat pancreas.Methods Reverse transcriptase-polymerase chain reaction (RTPCR) and immunohistochemistry (IHC) were applied to detect expression of TLR4-mRNA and TLR4 protein respectively. Results RT-PCR of RNA isolated from rat pancreatic tissue yielded the predicted amplicon for the TLR4. IHC/immunofluorescence revealed TLR4 protein mainly distributed in the epithelium of the pancreatic duct, vascular endothelium of the exocrine section, endocrine islet also had some signs of distribution. No TLR4 protein signal could be detected in the acinar cells. Conclusion TLR4 could be detected in rat pancreas. Its distribution is consistent with its roles in immune surveillance, mainly in tissues exposed to the external environment such as pancreatic duct as well as in immunologically important settings such as pancreatic vascular endothelium. Islet also has some signs of distribution. No TLR4 expression in acinar cells, suggesting TLR4 immunological involvement in the pathophysiology of pancreas.
【Abstract】 Objective To study the role of house dust mite ( HDM) induced airway epithelium TLR4 expression and T lymphocyte activation in asthmatic inflammation. Methods Thirty BALB/ c mice were randomly divided into an ovalbumin ( OVA) group, a HDMgroup, and a control group. The mice in the OVA group were sensitized with OVA and Al( OH) 3 , and repeatedly exposed to aerosolized OVA. The mice in the HDMgroup and the control group were sensitized and challenged with HDMand saline, respectively.Histopathology changes of pulmonary tissue and airway were observed under light microscope. Levels of IL-4, IL-5, IL-13, IL-17, and IFN-γin BALF were measured by ELISA. Total and differential cell counts in bronchoalveolar lavage fluid ( BALF) were also measured. The mRNA and protein expressions of TLR4 weredetected by quantitative real-time PCR and Western blot, respectively. Th1, Th2, and cells in the peripheral blood were detected by flow cytometry. Results Light microscope revealed eosinophil specific inflammatory cells infiltration around the peribronchovascular region,mucus gland hyperplasia, and airway mucous plug inthe OVA group. The HDM group showed more severe alveolar and intersititial congestion and neutrophils infiltration. The control group showed intact alveolus with few mucous plug and inflammatory cells.Compared with the OVA group, significant increases in the number of total cells and neutrophils, as well as significantly higher expression of IL-4, IL-5, IL-13, and IL-17 were detected in the HDMgroup ( P lt;0. 05) ,while IFN-γexpression had no significant change ( P gt;0. 05) . The expression of TLR4 mRNA and protein significantly increased in the HDMgroup( P lt; 0. 05) , and did not change significantly in the other two groups ( P gt;0. 05) . The percentages of Th2 and Th17 cells in peripheral blood in the HDMgroup were significantly higher than the OVA group ( P lt;0. 05) . Conclusion HDM may induce inflammatory cells infiltration andactivation of Th2 and Th17 lymphocyte cells via up-regulation of TLR4 expression in airway epithelium,which might play an important role in asthmatic inflammation.
Objective To verify tissue factor (TF)-bearing microparticle (TF-MP) could be released from Kupffer cells (KCs) stimulated by lipopolysaccharide (LPS) and TF controlled by Toll-like receptor 4 (TLR4) could induce acute pancreatitis. Methods After the acute pancreatitis model completed, the wild type C57/BL6 mouse (WT group) and the TLR4-/- mouse (TLR4-/- group) received intraperitioneal injections of 10 mg/kg LPS. The degree of pathological lesion and the TF expression were detected in the pancreas tissue. The TF and TLR4 protein and mRNA expressions in the KCs were detected at 6, 12, and 24 h after the last injection of LPS. The survival rates were campared in these estabilshed acute pancreatitis model mice. The TF and TLR4 protein and mRNA expressions in the KCs stimulated with LPS (300 μg/L) were also detected at 0, 15, 30, 60, and 120 min. The TF and TF-MP levels were detected in the supernatants of the KCs at these time point. Results The injury of the pancreas in the TLR4-/- group was slighter than that in the WT group. The TF proteins in the liver and pancreas tissues of the TLR4-/- group were significantly lower than those of the WT group (P<0.05). The survival rate of the TLR4-/- group was significantly higher than that of the WT group under the situation of the acute pancreatitis (P<0.05). The TLR4 and TF protien and mRNA expressions of the KCs were significantly decreased in the TLR4-/- group as compared with the WT group at 30, 60, and 120 min (P<0.05). The levels of TF and TF-MP in the supernatant of the TLR4-/- group were significantly lower than those of the WT group at 30, 60, and 120 min (P<0.05). Conclusion Acute pancretitis can be induced by TF and TF-MP expressions in KCs which could be regulated by TLR4 pathway.
Objective To observe the effects of nitric oxide ( NO) inhalation on lung inflammation of acute lung injury ( ALI) in rats. Methods Twenty-four SD rats were randomly divided into four groups, ie. a normal control group, an ALI group, a 20 ppm NO inhalation group, and a 100 ppm NO inhalation group. ALI model was established by LPS instillation intratracheally and the control group was instilled with normal saline. Then they were ventilated with normal air or NO at different levels, and sacrificed 6 hours later. Pathological changes were evaluated by HE staining. The expression of TLR4 in lung tissues was detected by immunohistochemistry. IL-6 level in lung homogenate was measured by ELISA. Results In the ALI group, the inflammation in bronchus and bronchioles was more apparently, and the expressions of TLR4and IL-6 were elevated significantly compared with the control group. 20 ppm NO inhalation significantly decreased the expression of TLR4 and IL-6, and alleviated the inflammation of ALI. However, 100 ppm NO inhalation did not change TLR4 expression and lung inflammation significantly, and increased IL-6 level.Conclusions Inhalation low level of NO( 20 ppm) can alleviate lung inflammation possibly by reducing theexpression of TLR4 and IL-6.
ObjectiveTo investigate the role and mechanism of S100A8/A9 in rat model of chronic obstructive pulmonary disease (COPD). Methods Twelve Wistar rats were randomly divided into a normal control group and a COPD group. The COPD model was established by exposing the rats to cigarette smoke and injected lipopolysaccharide (LPS) in bronchus for 1 month. The pathological changes of the lung tissue were observed under light microscope, and the emphysema indexes of pulmonary mean linear intercept (MLI), mean alveolar numbers (MAN) and pulmonary alveolar area (PAA) were analyzed by image analysis system. The concentrations of S100A8/A9 in serum and bronchoalveolar lavage fluid (BALF) were measured by enzyme linked immunosorbent assay. The mRNA expression levels of S100A8, S100A9, Toll-like receptor-4 (TLR4) and myeloid differentiation factor 88 (MyD88) of lung tissues were measured by real time polymerase chain reaction. The protein expressions of S100A8/A9, TLR4 and MyD88 of lung tissues were detected by immunohistochemistry. Results After cigarette smoking and LPS injection for 1 month, the rat lung tissue appeared in accordance with the typical pathological changes of COPD. The MLI, MAN and PAA had obvious difference compared with the normal control group (P<0.05). The concentrations of S100A8/A9 protein in BALF and serum of the COPD group were obviously higher than those of the normal control group (P<0.05). The levels of S100A8, S100A9, TLR4 and MyD88 mRNA of lung tissues in the COPD group were obviously higher than those in the normal control group (P<0.05), and the expression levels of S100A8 and S100A9 mRNA were positively correlated with the expression levels of TLR4 and MyD88 mRNA respectively (P<0.05). The levels of S100A8/A9, TLR4 and MyD88 protein of lung tissues in COPD group were obviously higher than those in normal control group (P<0.05), and the levels of S100A8/A9 protein were positively correlated with the levels of MyD88 and TLR4 protein (P<0.05). Conclusions As a new inflammatory mediator, S100A8/A9 may be involved in the occurrence and development of COPD. By up-regulating the expression of TLR4 and MyD88, the classical TLR4-MyD88 inflammatory pathway is activated, thus promotes the occurrence and development of COPD.
Objective To investigate the effect of peptidoglycan (PGN) on the secretion of pro-inflammatory cytokines by dendritic cells (DCs) and the regulation of T helper 17 (Th17) responses in experimental autoimmune uveitis. Methods Bone marrow cells from naive mice were cultured with granulocyte macrophage-colony-stimulating factor and interleukin (IL)-4 to induce DCs. DCs cultured for six days were randomly divided into two groups: PGNtreated group and control group. The DCs in PGNtreated group were stimulated with PGN and the same volume of phosphate buffered saline was added to the DCs as control group. The relative mRNA expression levels of IL-23, tumor necrotic factor alpha; (TNF-alpha;), IL-6,IL-1beta;were measured by real-time reverse transcriptase polymerase chain reaction (RT-PCR). Peptide fragment of interphotoreceptor retinoidbinding protein (IRBP1-20)specific T cells, which were isolated from the spleen and draining lymph nodes of C57BL/6 mice immunized with IRBP1-20 peptide fragments 13 days earlier, were co-cultured with PGN-treated or untreated DCs, respectively. Total RNA from T cells cocultured for two days were isolated and the relative expression of retinoic acid receptor-related orphan receptor gamma;t (ROR-gamma;t), IL-17, T-box expression in T cells (T-bet), interferon gamma; (IFN-gamma;) mRNA were detected by realtime RT-PCR. On the second, the fifth and the seventh day, the cocultured T cells were analyzed by flow cytometry to detect the percentages of IFN-gamma;, IL-17 positive cells. Results The real-time RT-PCR results revealed that the level of IL-23, IL-1beta;, IL-6, TNF-alpha; mRNA from PGNstimulated DCs were significantly increased compared to the control group (t=-14.363, -5.627, -3.85, -28.151; P<0.05). The level of RORgamma;t, IL-17 mRNA from the T cells cocultured with PGN-stimulated DCs were greatly increased compared with the control group (t=-5.601, -19.76;P<0.05). However, the level of T-bet, IFN-gamma; mRNA from the T cells cocultured with PGNstimulated DCs were significantly decreased compared with the control group (t=4.717, 11.207; P<0.05). Data of flow cytometry showed that at two days, five days, seven days after cocultured with PGN-treated DCs, the percentages of IL-17 positive T cells were increased compared to the control group (t=-2.944, -3.03, -4.81; P<0.05), and the percentages of IFN-gamma; positive T cells had no remarkable change (t=-1.25, -0.18, -2.16; P>0.05). Conclusion PGN can promote the secretion of Th17-related cytokines by DCs, which favors proliferation and differentiation of Th17 in experimental autoimmune uveitis.
ObjectiveTo observe the expression of Toll-like receptor 4 (TLR4) and inflammatory cytokines, leucocytic density and permeability in retina of diabetic rat. MethodsA total of 106 Brown Norway rats were randomly divided into experimental group and control group with 53 rats in each group. Diabetic model was established in experimental group by intraperitoneal injection of streptozotocin, and control rats received intraperitoneal injection of an equal volume of citric acid-sodium citrate buffer. Four weeks later, the retinas were collected for further analysis. TLR4 RNA and protein expression were measured by quantitative polymerase chain reaction and Western blot. Inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), monocyte chemo-attractant protein-1 (MCP-1), were measured by enzyme-linked immunosorbent assay in rat retina homogenate. Leukocyte density in the retina was measured by acridine orange fundus angiography. The retinal permeability was evaluated by Evans blue (EB) staining. ResultsTLR4 expression was significantly increased in diabetic rats of experimental group compared with non-diabetic rats of control group (F=1.606, 0.789; P < 0.05). Inflammatory cytokines (TNF-α, IL-1β and MCP-1) were significantly increased in retina of diabetic rats of experimental group versus non-diabetic rat of control group (F=24.622, 5.758, 4.829; P < 0.05). The retinal leukocyte density was (6.2±0.5)×10-5, (2.2±0.3)×10-5 cells/pixel2 in experimental and control group respectively, the difference was statistically significant (F=2.025, P < 0.05). The amount of retinal EB leakage was (23.41±4.47), (13.22±3.59) ng/mg in experimental and control group respectively, the difference was statistically significant (F=21.08, P < 0.05). ConclusionTLR4 and inflammatory cytokines expression, leucocytic density and permeability increased significantly in retina of diabetic rat.
ObjectiveTo investigate the effect and mechanism of microRNA (miR)-146a-3p on acute lung injury (ALI) and inflammation induced by lipopolysaccharide (LPS) in mice.MethodsThirty-two BALB/c mice were randomly divided into sham group, ALI group, ALI+agomiR-negative control (NC) group, ALI+miR-146a-3p agonist (agomiR-146a-3p) group, with 8 mice in each group. The ALI model was established by instilling 5 mg/kg LPS into the lungs through the trachea, and the same amount of saline was instilled slowly in the sham group. The mice in the ALI+agomiR-146a-3p group/NC group were injected with 8 mg/kg agomiR-146a-3p or agomiR-NC respectively through the tail vein, once a day, for 3 days. The sham group and the model group were given the same amount of normal saline injection through the tail vein. After 24 hours, they were sacrificed and lung tissues were collected. The expressions of miR-146a-3p and toll-like receptor 4 (TLR4) mRNA in lung tissue were detected by RT-qPCR, the expression levels of TLR4, cleaved caspase-3, Bcl-2 related X protein (Bax), B cell lymphoma-2 (Bcl-2) protein in lung tissue were detected by Western blot. The changes of lung pathology were observed by hematoxylin-eosin staining. The apoptosis of lung tissue was detected by TdT-mediated dUTP nick-end labeling. The expression levels of IL-1β, IL-6 and TNF-α in lung tissue were detected by enzyme-linked immunosorbent assay (ELISA). The dual luciferase reporting system verified the targeting relationship between miR-146a-3p and TLR4 in MRC-5 cells. MRC-5 cells were divided into control group, LPS group, LPS+miR-146a-3p mimic group, LPS+pcDNA3.1(pc)-TLR4 group, LPS+miR-146a-3p mimic+pc-TLR4 group. 100 nmol/L miR-146a-3p mimic and pc-TLR4 plasmids were transfected into MRC-5 cells separately or jointly for 24 hours, and then treated with 1000 ng/mL LPS or normal saline for 72 hours. The apoptosis rate was detected by flow cytometry. The expression levels of TLR4, cleaved caspase-3, Bax, and Bcl-2 proteins were detected by Western blot. The levels of IL-1β, IL-6 and TNF-α were detected by ELISA.ResultsCompared with the ALI group, the expression of miR-146a-3p was up-regulated, the expressions of TLR4 mRNA and protein were down-regulated, the apoptotic rate was decreased, the expressions of cleaved caspase-3 and Bax protein was down-regulated, the expression of Bcl-2 protein was up-regulated, and the levels of TNF-α, IL-6 and IL-1β in lung tissue were decreased in the lung tissues of the ALI+agomiR-146a-3p group (P<0.05). Dual-luciferase reporter assay confirmed that miR-146a-3p regulates transcription by targeting TLR4 3’UTR sequence (P<0.05). Compared with the LPS group, the expression of TLR4 protein in MRC-5 cells of the LPS+miR-146a-3p mimic group was down-regulated, the apoptosis was reduced, the expressions of cleaved caspase-3 and Bax protein were down-regulated, and the levels of TNF-α, IL-6 and IL-1β in lung tissue were decreased (P<0.05). Overexpression of TLR4 reversed the effect of miR-146a-3p mimic overexpression on LPS-induced apoptosis and inflammation of MRC-5 cells (P<0.05).ConclusionmiR-146a-3p alleviates LPS-induced ALI in mice by down-regulating TLR4.
Objective To observe the expression of GdCl3 on Toll-like receptors (TLRs) of RAW264.7 from murine macrophage cell line induced by lipopolysaccharide (LPS) stimulation. Methods Cells were divided into 3 groups: blank group, LPS group and GdCl3 group. And these cells dyed by goat anti-mouse TLR2/4 poly-antibody and anti-goat IgG labelled with fluorescein isothiocyanate (FITC). The synthesis of TLR2/4 protein were determined by flow cytometry (FCM) analysis and reverse transcription polymerase chain reaction (RT-PCR) analyzed their gene expression. Cell supernatants were taken to measure TNF-α production following the ELISA (enzyme-linked immunosorbent assay) protocol. Results The expressions of TLR2/4 protein and mRNA in GdCl3 group under action of different concentration of GdCl3〔TLR2/4 protein, 200 μmol/L: (70.2±1.28)%/(66.7±2.59)%, 400 μmol/L: (64.9±1.43)%/(60.4±1.25)%, 2 000 μmol/L: (47.4±0.98)%/(32.1±0.74)%; TLR2/4 mRNA (the value of absorbance), 200 μmol/L: (76.42±2.76)/(101.72±3.14), 400 μmol/L: (75.60±3.76)/(89.65±5.17), 2 000 μmol/L: (64.22±4.67)/(78.44±4.88)〕 were significantly lower than those of in LPS group 〔TLR2/4 protein: (94.4±1.76)%/(95.7±0.87)%, P<0.01; TLR2/4 mRNA: (127.64±3.25)/(119.82±5.59), P<0.05, P<0.01〕. The expression of TNF-α in GdCl3 group under action of different concentration of GdCl3〔200 μmol/L: (2 540±77) pg/ml, 400 μmol/L: (2 041±106) pg/ml, 2 000 μmol/L: (1 020±220) pg/ml〕 was also significantly lower that that of in LPS group 〔(4 688±127) pg/ml, P<0.01)〕. Conclusion GdCl3 significantly inhibits TLR expression and secretion of TNF-α under the condition of LPS stimulation in vivo.
Objective To investigate changes of TLR2 mRNA expression in lung of a mouse model of Chlamydia Pneumoniae pneumonitis, and to explore the possible mechanism of signal transduction. Methods Ninety-six male C3H/HeJ mice were randomly divided into four groups as follows: a control group, a model group, a SB203580 intervened group, and a pyrrolidine dithiocarbamate( PDTC) intervened group. Chlamydia Pneumoniae pneumonitis was induced by intranasally inoculated with 4. 0 ×106 IFU/mL of C. Pneumoniae per mouse in the model group and two intervened groups. Then the intervened groups were intraperitoneally injected with the p38MAPK inhibitor SB203580 and nuclear factor kappa B ( NF-κB)inhibitor PDTC, respectively. Six mice in each group were randomly killed in 1st, 4th, 7th and 14th day. The expressional changes of TLR2 mRNA in the mice lung tissue were measured by semi-quantitative RT-PCR. The concentrations of TNF-α in the lung homogenate were measured by ELISA. Results TLR2 mRNA expression in the lung tissue significantly increased after C. Pneumoniae infection, peaking at 4th and 7th days, then decreased after 14th day. Tumor necrosis factor-α( TNF-α) was also elevated in the lung tissue after C. Pneumoniae challenging. Both SB203580 and PDTC treatment effectively inhibited TNF-αand TLR2 mRNA expressions in lung. The inhibitory effect was more obvious by SB203580 treatment. Conclusion C. Pneumoniae can upregulate the expressions of TLR2 and TNF-α in lung, and TLR2/MAPK and TLR2 /NF-κB signal pathways may be involved in Chlamydia Pneumoniae pneumonitis.