One eye each in 3 groups of 12 pigmented rabbits after bilateral vitrectomy received 0.5mg, 1mg or 2mg triamcinolone acetonide (TA), respectively. The fellow eye received only balance saline solution as control. Ophthalmoscopy and electroretinography were performed during 1 day to 38 days after vitrectomy and drug injection. Light and electronmicroscopic studies were done on the 28th day. The particles of drug were visible on day 28 in all TA-treated eyes. Administration of 0. 5rug and 1mg TA did not result in different changes in ERG b-wave amplitudes compared with those in control eyes(P>0. 05). There were significant elevations of ERG b-wave in 2mg TA eyes compared to the control eyes(Plt;0.05), Both ligbt and electronmicroscopy of the retina in these groups were almost normal. The results showed no Toxielties in TA treated eye up to 2mg after vitrectomy. This offers the experimental evidence as a baseline for combining TA with vitrectomy to reduce recurrence of proliferative vitreoretinopathy. (Chin J Ocul Fundus Dis,1996,12: 105- 107)
Objective To give a prel iminary experimental evidence and to prove chitosan and allogeneic morsel ized bone as potential bone substitutions in repairing rabbit radius segmental defect. Methods Chitosan and allogeneic morsel ized bone were mixed with various ratios (1 ∶ 5, 1 ∶ 10, 1 ∶ 25, 1 ∶ 50, and 1 ∶ 100). After preparation, the physicaland chemical properties of the composites were prel iminary detected; the composites at the ratios of 1 ∶ 50 and 1 ∶ 25 had good physical and chemical properties and were used for the animal experiment. The radius segmental defects of 15 mm in length were made in 50 adult New Zealand white rabbits (weighing 2.5-3.0 kg), then the animals were divided into 2 groups. In groups A and B, chitosan/allogeneic morsel ized bone composites were implanted at the ratio of 1 ∶ 50 and 1 ∶ 25, respectively. After 1, 2, 4, 8, and 12 weeks of operation, the gross, histological, immunohistochemical observations were performed. Before the rabbits were sacrified, X-ray films were taken; the serum calcium and alkal ine phosphatase (ALP) concentration were measured; and the biomechanical measurement was carried out at 12 weeks. Results The results of gross observation were essentially consistent with those of the X-ray films. The histological observation showed that the bone formation was earl ier in group A than in group B; the amount of new bone formation in group A was more than that in group B; and the bone forming area in group A was bigger than that in group B (P lt; 0.05) at 4 and 8 weeks after operation. The immunohistochemical staining showed that vascular endothel ial growth factor and insul in-l ike growth factor receptor II proteins expressed in the cytoplasm of 2 groups after 4 and 8 weeks, and the expression in group A was higher than that in group B (P lt; 0.05). There was no significant difference in the serum calcium concentration between 2 groups at each time point (P gt; 0.05). After 4 and 8 weeks, the ALP concentration in group A was significantly higher than that in group B (P lt; 0.05). After 12 weeks, the radius maximum bending loads of groups A and B were (299.75 ± 27.69) N and (278.54 ± 17.09) N, respectively, showing significant difference (t=4.045,P=0.002). Conclusion The composite of chitosan and allogeneic morsel ized bone has good osteogeneic activity and can beused as a bone tissue engineering scaffold, and the optimum ratio of chitosan to allogeneic morsel ized bone was 1 ∶ 50.
Objective To evaluate the effect of WO-1 on repair of the bone defect in the New Zealand rabbit radius by an oral or local administration. Methods Bone defects were surgically created in the bilateral radii of 36 Zealand rabbits (1.6-2.0 kg), which were randomly divided into3 groups. In Group A, the defective areas were given WO-1 0.1 ml (50 mg/ml) by the local injections; in Group B, the rabbits were given WO-1 5 mg each day by the oral administration. Group C was used as a control group. Among each of the 3 groups, 4 rabbits were randomly selected and were sacrificed at 20, 30 and 60 days after operation, respectively. Then, the serological, X-ray and histological examinations were performed. Results The serum alkaline phosphatase and bone glaprotein levels were significantly higher at 20 and 30 days after operation in Groups A and B than in Group C, but significantly lower at 60 days after operation in Groups A and B than in Group C(Plt;0.01). The X-ray and histological examinations at 20, 30 and 60 days after operation revealed that the callus formation and remodeling were earlier in Groups A and B thanin Group C, and the remodeling was earlier and better in Group A than in Group B. Conclusion WO-1 can promote the repair of the radial defect in a rabbit; however, further studies on the doseeffect relationship, administration time, and administration route are still needed.
To investigate the protective effect of propofol on ischemia/reperfusion induced spinal cord injury in rabbits and its influence on excitatory amino acid (EAA). Methods Sixty New Zealand white rabbits weighing 2.0-2.5 kg, half males and half females, were selected. The infrarenal circumaortic clamping model was used. And 6 mL/kg different fluids were continuously infused through a catheter into the aorta distal to the clamping site at a speed of 12 mL/(kg?h) during the 30 minutes ischemia period. According to the different infusing l iquids, the rabbits were randomized into 6 groups(n=10 per group): group A, normal sal ine; group B, 10% intral ipid; group C, propofol 30 mg/kg; group D, propofol 40 mg/kg; group E, propofol 50 mg/kg; group F, propofol 60 mg/kg. At 0, 6, 24, and 48 hours after reperfusion, neurologic outcomes were scored on a Tarlov scale system. At 48 hours after reperfusion, the number of normal neurons in the anterior spinal cord was counted, and concentration of EAA in the lumbar spinal cord was measured by high performance l iquid chromatography. Results The neuroethological score was better in groups C, D, E and F than that of groups A and B (P lt; 0.05), the score of group E was the highest (P lt; 0.05), and there was no significant difference between group A and group B (P gt; 0.05). The number of normal neurons in the anterior spinal cord of groups C, D, E and F was greater than that of groups A and B (P lt; 0.05), and group E was greater than groups C, D and F (P lt; 0.05). The concentration of EAA in groups A, B, C, D, E and F was greater than that of normal tissue, the group E was the lowest (P lt; 0.05), the groups A and B were the highest (P lt; 0.05), and there was no significant difference between group A and group B (P gt; 0.05). Concentrations of glutamate and aspartic acid were negatively correlated to normal neuron numbers in the anterior spinal cord and neuroethological scores 48 hours after reperfusion, and the corresponding correlation coefficient was — 0.613, — 0.536, — 0.874 and — 0.813, respectively (P lt; 0.01). Conclusion Propofol can significantly inhibit the accumulation of EAA in spinal cord and provide a protective effect against the ischemia/reperfusion injury induced spinal cord in rabbits.
In this paper,the changes of activities of enzymes relating toenergy metabolism in rabbit's retina during acute ocular hypertension were observed.The activities of succinate dehydrogenase and adenosine triphosphatase were foud to be reduced,while the activities of the lactatic dehydrognease and glucose-6-phosphatase increased.The results reveal the disturbance of metabolism of energy in retina undergone acute ocular hypertension,and suggest that this might be the underlying factors relating to the defects of the functions and structures of the retina. (Chin J Ocul Fundus Dis,1993,9:141-144)
Objective To explore an experimental method of transfecting the marrow stromal stem cells (MSCs) with the reconstructed PGL3-t ransforming growth factor-β1 (TGF-β1) gene and to evaluate the feasibility of selfinduction of MSCs to the chondrocytes in vitro so as to provide a scientific and experimental basis for a further “gene enhanced tissue engineering” research. Methods The rabbit MSCs was transfected with the reconstructed PGL3-TGF-β1gene by the Liposo mesMethod, the growth of the cells were observed, and the growth curve was drawn. The living activity of the transfected cells in the experimental group was evalua ted by MTT, and the result was significantly different when compared with that in the control group. By the immunohistochemistry method (SABC), the antigens of TGF-β1 and collagen Ⅱ were examined at 2 and 7 days of the cell culture afte r transfe ction with PGL3-TGF-β1gene. The pictures of the immunohistochemistry slice were analyzed with the analysis instrument, and the statistical analysis was perfor med with the software of the SPSS 11.0, compared with the control group and the blank group. Results Transfection of the cultured rabbit MSCs in vitro with the reconstructed PGL3-TGF-β1gene by the Liposomes Method achie ved a success, with a detection of the Luceraferase activity. The result was significantly different from that in the control group (Plt;0.01). Tested by MTT, the living acti vity of the transfected cells was proved to be significantly decreased (Plt;0.01 vs. the control group). By the immunohistochemistry method (SABC) to study TGF-β1 positive particles were detected in the experimental group,but there were no positive particles in the control and the blank groups. There was a significant difference between the two groups of the experiment and the control group based on the analysis of the ttest (Plt;0.01). By the immunohistochemistry me thod (SABC) to study collagen Ⅱ, there were more positive particles in the transfected cells in t he experimental group than in the control and the blank groups, and there was a significant difference between the experimental group and the two other groups based on the t-test (Plt;0.01). Conclusion Transfection of the rabbit MSCs with the reconstructed PGL3-TGF-β1 gene by the Liposomes Method is successful. There may be some damage to the cells when transfection is performed. The transfecte d BMS cells with PGL3-TGF-β1 gene can express and excrete TGF-β1when cultured in vitro. The transfected MSCs that secret TGF-β1 can be self-induced into the chondrocytes after being infected for 7 days when cultured in vitro.
Objective Construction of viable tissue engineered bone is one of the most important research fields in the cl inical appl ication of bone tissue engineering, to investigate the function of nerve factors in bone tissue engineering by celldetection in vitro and construction of neurotization tissue engineered bone in vivo. Methods Fifty-four healthy New Zealandwhite rabbits, male or female, weighing 2-3 kg, were involved in this study. Bone marrow mesenchymal stem cells (BMSCs) from the bone marrow of white rabbits were cultured. The second passage of BMSCs were treated with sensory nerve or motor nerve homogenates, using the LG-DMEM complete medium as control. The prol iferation and osteogenic differentiation of the cells were observed and tested by the MTT assay, alkal ine phosphatase (ALP) stain, and collagen type I immunocytochemistry identification. The osteogenic induced BMSCs were inoculated in β tricalcium phosphate (β-TCP) biomaterial scaffold and cultured for 72 hours, then the β-TCP loaded with seed cells was implanted in the rabbit femur with 15 mm bone and periosteum defects. Fifty-four New Zealand white rabbits were randomly divided into three groups (n=18): sensory nerve bundle (group A) or motor nerve bundle (group B) were transplanted into the side groove of β-TCP scaffold, group C was used as a control without nerve bundle transplantation. X-ray detection was performed at the 4th, 8th, and 12th weeks after operation.
Objective To investigate the effects of Rho-kinase inhibitor——fasudil hydrochloride hydrate on vein graft intimal hyperplasia in vivo. Methods Twenty-four healthy rabbits (2.3-2.5 kg) were randomly divided into two groups(n=12). Fasudil hydrochloride hydrate (experimental group) and normal sodium (control group) were given 3 days beforeoperation with 30 mg/kg by intravenous injection everyday and continued until the end of the experiment. After a longitudinal incision, the femoral vein and the famoral artery were exposed about 3 cm. An approximately 2.5 cm segment of the famoral vein was harvested for the reversed-vein graft. The femoral artery was removed 1 cm segment and replaced by the harvested femoral vein. At 2 and 4 weeks after operation, the grafts were stained with HE to observe the thickness of the intima. Furthermore, the prol iferating cell nuclear antigen (PCNA) and transmission electron microscope was used to study the prol iferation of smooth muscle cell. In situ apoptosis was detected by TUNEL assay. Results All rabbits survived till the end of the experiment. The color Doppler imaging examination showed that all grafts were patency. At 2 and 4 weeks after the operation, HE staining showed that the intimal hyperplasia were obvious in the two groups. There were lots of cells in the intima, and more fusiform smooth muscle cells in the media. At 2 and 4 weeks, the intimal thickness were (30.33 ± 3.23) μm and (43.11 ± 4.92) μm in experimental group and were (44.83 ± 3.53) μm and (66.16 ± 8.45) μm in control group. The rates of PCNA positive cell were 14.28% ± 2.76% and 7.61% ± 1.06% in experimental group and were 20.08% ± 3.56% and 8.73% ± 1.35% in control group. The rates of TUNEL positive cell were 3.55% ± 0.36% and 1.22% ± 0.18% in experimental group and were 1.11% ± 0.31% and 0.55% ± 0.11% in control group. There were significant differences (P lt; 0.05) between the two groups at 2 weeks or 4 weeks, between2 weeks and 4 weeks within group. Conclusion Intravenous injection of fasudil hydrochloride hydrate is an effective method for prevention of vein graft intimal hyperplasia of rabbit.
Objective To explore the feasibil ity of using PKH26 as a cell tracer to construct tissue engineered bone. Methods BMSCs isolated from the bone marrow of 1-week-old New Zealand white rabbit were cultured. The BMSCs at passage 3 were labeled with PKH26 and were observed under fluorescence microscope. The percentage of the labeled cells wasdetected by Flow cytometer. The labeled cells were induced to differentiate into osteoblasts in vitro and the morphology of the cells after induction was observed under inverted phase contrast microscope. The osteogenic induction was evaluated by ALP staining and Alizarin red staining. The cells labeled with PKH26 were seeded on the bio-derived bone to construct tissue engineered bone in vitro. Then the compound of cells and material were observed under fluorescence microscope. The compound of labeled cells and material were implanted into the rabbit thigh muscle, and the transformation of the labeled cells was observed by fluorescence microscope 14 and 28 days later. Results Fluorescence microscope observation: the BMSCs labeled by PKH26 were spherical and presented with red and uniform-distributed fluorescence, and the contour of the cells were clearly observed when they were adherent 24 hours after culture. Flow cytometric detection revealed that the percentage of labeled cells was 97.2%. After osteogenic induction, the morphology of the cells changed from long-fusiform to polygon-shape or cube-shape, more ECM was secreted, andthe ALP and the Alizarin red staining were positive. At 48 hours after culturing the PKH26 labeled BMSCs with bio-derived bone, the fluorescence microscope observation showed that there was red fluorescence on the surface and inside of the material. At 14 days after implantation, the labeled cells with red and l ight fluorescence were evident in the implantation area; while at 28 days, the cells with red fluorescence were still evident but less in quantity and weaker in fluorescence strength. Conclusion PKH26 can be used as BMSCs label for the construction of tissue engineered bone in vitro and the short-term tracing in vivo.
Objective?To investigate the osteogenesis effects of angiopoietin 1 (Ang-1) gene transfected bone marrow mesenchymal stem cells (BMSCs) seeded on β tricalcium phosphate (β-TCP) scaffolds (tissue engineered bone) with platelet-rich plasma (PRP).?Methods? BMSCs were isolated from bone marrow tissue of rabbits. The Ang-1 gene was transfected into the BMSCs at passage 2 by lentivector, which were seeded on β-TCP scaffolds with PRP (0.5 mL) after 48 hours of transfection. Bilateral radial segmental bone defects (15 mm in length) were created in 20 3-month-old New Zealand rabbits. Then the tissue engineered bone with the Ang-1 gene transfected BMSCs (experimental group) and untransfected BMSCs (control group) were implanted into the defects in the right and left radius, respectively. X-ray, histology, immunohistochemistry, and biomechanics observations were done at 2, 4, 8, and 12 weeks after operation.?Results?In vitro, the transfected rate was over 90% and RT-PCR showed that the Ang-1 expression were significantly increased after transfection. The X-ray films showed that some callus formed at 4 weeks, partial bony union was observed at 8 weeks, and complete union at 12 weeks in experimental group; and bone union was not observed at 12 weeks in control group. HE staining showed that capillary appeared at 8 weeks and more capillaries were observed in new bone at 12 weeks in experimental group; only a few capillaries were observed at 12 weeks in control group. At 8 and 12 weeks, the microvascular density were (50.1 ± 7.8) /mm2 and (66.1 ± 3.5) /mm2 in experimental group and were 0 and (30.3 ± 7.2)/mm2 in control group, showing significant differences between 2 groups at 12 weeks (Z= —2.107, P=0.031). Immunohistochemistry examination showed that the positive cells can be found at 8 weeks in experimental group. And the biomechanical analysis showed that maximum loads of experimental group were significantly higher than those of control group in three-point bending test and compression test at 12 weeks (P lt; 0.05).?Conclusion?The tissue engineered bone with PRP and Ang-1 can increase the osteogenic properties by enhancing capillary regeneration, thus it can be used to repair radial segmental bone defects of rabbit.