• <table id="gigg0"></table>
  • west china medical publishers
    Keyword
    • Title
    • Author
    • Keyword
    • Abstract
    Advance search
    Advance search

    Search

    find Keyword "Nucleus pulposus cell" 20 results
    • INCREASED SYNTHESIS OF EXTRACELLULAR MATRIX IN PASSAGED NUCLEUS PULPOSUS CELLS BY TRANSFECTION WITH ADENOVIRAL VECTORS CONTAINING HUMAN TRANSFORMING GROWTH FACTOR β1 GENE

      Objective To determine whether the transforminggrowth factor β1 (TGF-β1) is a key regulatory molecule required for an increase or a balance of extracellular matrix (ECM) and DNA synthesis in the goat passaged nucleus pulposus (NP) cells. Methods The NP cells isolated from the goat intervertebral discs were cultured in vitro for a serial of passages and transfected with the replicationincompetent adenoviral vectors carrying the human TGF-β1 (hTGF-β1) or lacZ genes. Then, they were cultured in monolayer or alginate bead 3dimensional (3-D) systems for 10 days.The changes in the production and the molecular components of ECM that occurredin the NP cells transfected with Ad/hTGF-β1 or the controls were evaluated by Westernblot and absorbance of glycosaminoglycan (GAG)-Alcian Blue complexes. Differences of DNA synthesis in the variant cells and culture systems were assessed by fluorometric analysis of the DNA content. ResultsA quantitation in the variant culture systems indicated that in monolayers the NP cells at Passage 3 transfected with Ad/hTGF-β1 had a much higher cell viability and more DNA synthesis(P<0.05); however, in the alginate 3-D culture system, the NP cells transfected with Ad/hTGF-β1 did not have any significant difference from the controls(P>0.05). The Western blotting analysis ofthe protein sample isolated from the variant cells for TGF-β1, type Ⅱ collagen, and Aggrecan expression indicated that in the monolayers and alginate 3-D culture systems the NP cells at Passage 3 transfected with Ad/hTGF-β1 revealed much higher protein levels than the controls(P<0.05); whereas the type Ⅰcollagen content was much lower than the controls (P<0.05), but a significatly increased ratio of type Ⅱ/type Ⅰ collagen was found in both of the cell culture systems(P<0.05). The GAG quantification also showed a positive result in both the cell culture systems and the NP cells at Passage 3 transfected with Ad/hTGF-β1 had a much higher GAG content than the controls(P<0.05). Conclusion To a greaterextent, hTGF-β1 can play a key role in maintaining the phenotype of the NP cells and can still have an effect of the phenotypic modulation after a serial of the cell passages. The NP cells that are genetically manipulated to express hTGF-β1 have a promising effect on the restoration of the intervertebral disc defects. The NP cells transfected with Ad/hTGF-β1 cultured in the 3-D alginate bead systems can show a nearly native phenotype.

      Release date:2016-09-01 09:22 Export PDF Favorites Scan
    • TRANSPLANTATION OF TRANSFORMING GROWTH FACTOR β3 GENE-MODIFIED NUCLEUS PULPOSUS CELLS FOR INTERVERTEBRAL DISC DEGENERATION IN RABBITS

      Objective To evaluate the cell biological features and the effect of transplantation of transforming growth factor β3 (TGF-β3) gene-modified nucleus pulposus (NP) cells on the degeneration of lumbar intervertebral discs in vitro. Methods NP cells at passage 2 were infected by recombinant adenovirus carrying TGF-β3 (Ad-TGF-β3) gene (Ad-TGF-β3 group), and then the cell biological features were observed by cell vital ity assay, the expression of the TGF-β3 protein was determined by Western blot, the expression of collagen type II in logarithmic growth phase was determined by immunocytochemistry. The cells with adenovirus-transfected (Adv group) and the un-transfected cells (blank group) were used as controls. The model of lumbar disc degeneration was establ ished by needl ing L3, 4, L4, 5, and L5, 6 in 30 New Zealand rabbits (weighing 3.2-3.5 kg, male or female). Then Ad-TGF-β3-transfected rabbit degenerative nucleus pulposus cells (100 μL, 1 × 105/ mL, group A, n=12), no gene-modified nucleus pulposus cells (100 μL, 1 × 105/mL, group B, n=12), and phosphatebuffered sal ine (PBS, 100 μL, group C, n=6) were injected into degenerative lumbar intervertebral discs, respectively. L3, 4, L4, 5, and L5, 6 disc were harvested from the rabbits (4 in groups A and B, 2 in group C) at 6, 10, and 14 weeks respectively to perform histological observation and detect the expression of collagen type II and proteoglycan by RT-PCR. Results The viabil ity of nucleus pulposus cells was obviously improved after transfected by recombinant Ad-TGF-β3 gene. At 3, 7, and 14 days after transfected, TGF-β3 expression gradually increased in nucleus pulposus cells. The positive staining of collagen type II was seen in Ad-TGF-β3 group, and the positive rate was significantly higher than that of Adv group and blank group (P lt; 0.05). The disc degeneration in group A was sl ighter than that in groups B and C. The expressions of collagen type II mRNA and proteoglycan mRNA in group A were significantly higher than those in groups B and C at 6, 10, and 14 weeks (P lt; 0.05). Conclusion TGF-β3 can improve the biological activity of NP cells and promote the biosynthesis of collagen type II and proteoglycan in intervertebral discs, alleviate the degeneration of intervertebral discs after transplantation.

      Release date:2016-08-31 04:23 Export PDF Favorites Scan
    • EFFECT OF VITAMIN C ON APOPTOSIS OF NUCLEUS PULPOSUS CELLS INDUCED BY TUMOR NECROSIS FACTOR α AND SERUM DEPRIVATION

      ObjectiveTo explore the effect of Vitamin C (Vit C) on the apoptosis of human nucleus pulposus (NP) cells induced by tumor necrosis factor α (TNF-α) and serum deprivation. MethodsThe NP cells were isolated from patients undergoing spine corrective operation by collagenase trypsin. The experiment was divided into 3 groups:Vit C group (group A), TNF-α group (group B), and serum deprivation group (group C). Group A was reassigned to A1 subgroup (basic medium), A2 subgroup (100 μg/mL Vit C), and A3 subgroup (200 μg/mL Vit C). Group B was reassigned to B0 subgroup (control group), B1 subgroup (100 ng/mL TNF-α), B2 subgroup (100 μg/mL Vit C+100 ng/mL TNF-α), and B3 subgroup (200 μg/mL Vit C+100 ng/mL TNF-α). Group C was reassigned to C0 subgroup (Control group), C1 subgroup (2% FBS), C2 subgroup (2%FBS+100 μg/mL Vit C), and C3 subgroup (2% FBS+200 μg/mL Vit C). After C1 subgroup (2% FBS), C2 subgroup (2%FBS+100 μg/mL Vit C), and C3 subgroup (2% FBS+200 μg/mL Vit C). After application of 100 μg/mL or 200 μg/mL Vit C for 24 hours, NP cells were stimulated by TNF-α and serum deprivation, then the apoptosis rate of NP cells was detected by a flow cytometry, and the gene expressions of the extracellular matrix of NP cells (collagen type Ⅰ, collagen type Ⅱ, aggrecan, and Sox9) and apoptosis related genes (p53, FAS, and Caspase 3) were detected by real-time fluoroscent quantitative PCR. ResultsGroup A:Vit C could significantly reduce the apoptosis rate and gene expressions of p53, FAS, and Caspase 3 of NP cells in A2 and A3 subgroups when compared with A1 subgroup (P<0.05), but there was no significant difference between A2 subgroup and A3 subgroup (P>0.05); Vit C could promote the expressions of the extracellular matrix (collagen type Ⅰ, collagen type Ⅱ, aggrecan, and Sox9) of NP cells in a concentration dependent manner (P<0.05). Group B:TNF-α significantly increased the apoptosis rate and the gene expressions of p53, FAS, and Caspase 3 in B1 subgroup when compared with B0 subgroup (P<0.05); however, Vit C significantly increased the apoptosis rate and the gene expressions in B2 subgroup, and significantly decreased them in B3 subgroup when compared with B1 subgroup (P<0.05). Group C:2% FBS significantly increased the apoptosis rate of NP cells and significantly reduced the gene expressions of p53, FAS, and Caspase 3 in C1 subgroup when compared with C0 subgroup (P<0.05); Vit C could significantly reduce the apoptosis rate and gene expressions of p53, FAS, and Caspase 3 in C3 subgroup, but it could significantly increase them in C2 subgroup when compared with C1 subgroup (P<0.05). ConclusionVit C can promote the synthesis and secretion of extracellular matrix of NP cells. 200 μg/mL Vit C may delay the apoptosis induced by TNF-α and serum deprivation, indicating the potential therapeutic effect of Vit C on intervertebral disc degeneration.

      Release date: Export PDF Favorites Scan
    • AN IN VITRO STUDY ON HUMAN BONE MARROW MESENCHYMAL STEM CELLS PROTECTING NUCLEUSPULPOSUS CELLS FROM OXIDATIVE STRESS-INDUCED APOPTOSIS IN A CO-CULTURE SYSTEM OF NODIRECT CELLULAR INTERACTION

      Objective Bone marrow mesenchymal stem cells (BMSCs) transplantation can potentially regenerate the degenerated intervertebral disc, with the underlying regenerating mechanism remaining largely unknown. To investigate the potential of human BMSCs protecting nucleus pulposus cells (NPCs) from oxidative stress-induced apoptosis in a coculturesystem, and to illustrate the possible mechanisms of BMSCs transplantation for intervertebral disc regeneration. Methods BMSCs collected by density gradient centrifugation in Percoll solution were cultured and sub-cultured till passage 3, and the surface molecules of CD34, CD45, and CD13 were identified. NPCs were isolated by collagenase digestion and the chondrocyte l ike phenotype was confirmed by morphologic observation after HE staining, inverted phase contrast microscope, proteoglycan, and collagen type II expression after toluidine blue and immunocytochemistry staining. The 3rd passage BMSCs and the 1st passage NPCs were divided into four groups: group A, NPCs (1 × 106 cells) were cultured alone without apoptosis inducing (negative control); group B, NPCs (1 × 106 cells) were co-cultured with BMSCs (1 × 106 cells) with apoptosis inducing; group C, NPCs (1 × 106 cells) were co-cultured with BMSCs (3 × 105 cells) with apoptosis inducing; group D, NPCs (1 × 106 cells) were cultured alone with apoptosis inducing (positive control). After 3 or 7 days of culture or co-culture, the NPCs in groups B, C, and D were exposed to 0.1 mmol hydrogen peroxide for 20 minutes to induce apoptosis. With DAPI staining cellular nucleus, Annexin-V/propidium iodide staining cellular membrane for flow cytometry analysis, the apoptosis of NPCs in each group was studied both qual itatively and quantitatively. Besides, the changes in Bax/Bcl-2 gene transcription and Caspase-3 protein content, were analyzed with semi-quantitative RT-PCR and Western blot. Results BMSCs were successfully isolated and CD34-, CD45-, and CD13+ were demonstrated; after isolated from degenerated intervertebral discs and sub-cultured, the spindle-shaped 1st passage NPCs maintained chondrocyte phenotype with the constructive expressions of proteoglycan and collagen type II in cytoplasm. DAPI staining showed the nucleus shrinkage of apoptosis NPCs. Co-cultured with BMSCs for 3 days and 7 days, the apoptosis rates of NPCs in groups B (29.26% ± 8.90% and 18.03% ± 2.25%) and C (37.10% ± 3.28% and 13.93% ± 1.25%) were lower than that in group D (54.90% ± 5.97% and 26.97% ± 3.10%), but higher than that of groupA (15.67% ± 1.74% and 8.87% ± 0.15%); all showing significant differences (P lt; 0.05). Besides, semi-quantitative RT-PCR showed Bcl-2 gene transcription up-regulated (P lt; 0.05) and no significant change of Bax (P gt; 0.05); Western blot result showed that the Caspase-3 protein expression of groups B and C was lower than that of group D, and was higher than that of group A; all showing significant differences (P lt; 0.05). Conclusion In a co-culture system without direct cellular interactions, the oxidative stress-induced apoptosis of human NPCs was amel iorated by BMSCs. The enhanced anti-apoptosis abil ity of NPCs preconditioned by co-culturing with BMSCs might come from the decreased Bax/Bcl-2 gene transcription ratio.

      Release date:2016-08-31 05:47 Export PDF Favorites Scan
    • EFFECTS OF RECOMBINANT ADENOVIRUS VECTOR CARRYING HUMAN INSULIN-LIKE GROWTH FACTOR 1 GENE ON THE APOPTOSIS OF NUCLEUS PULPOSUS CELLS IN VITRO

      Objective To investigate the effects of human insulin-like growth factor 1 (hIGF-1) gene transfected by recombinant adenovirus vector (Ad-hIGF-1) on the apoptosis of rabbit nucleus pulposus cells induced by tumor necrosis factor α (TNF-α). Methods The intervertebral disc nucleus pulposus were harvested from 8 healthy adult domestic rabbits (male or female, weighing 2.0-2.5 kg). The nucleus pulposus cells were isolated with collagenase II digestion and the passage 2 cells were cultured to logarithm growing period, and then they were divided into 3 groups according to culture condition: DMEM/F12 medium containing 10% PBS, DMEM/F12 medium containing 10% PBS and 100 ng/mL TNF-α, and DMEM/ F12 medium containing 10% PBS, 100 ng/ mL TNF-α, and Ad-hIGF-1 (multiplicity of infection of 50) were used in control group, TNF-α group, and Ad-hIGF-1 group, respectively. The results of transfection by adenovirus vector carrying hIGF-1 gene were observed by fluorescent microscopy; the expression of hIGF-1 protein was detected by Western blot, hIGF-1 mRNA expression by RT-PCR, and the cell apoptosis rate by TUNEL and flow cytometry. Results Green fluorescence was observed by fluorescent microscopy in Ad-hIGF-1 group, indicating that successful cell transfection. The expressions of hIGF-1 protein and mRNA were detected in Ad-hIGF-1 group by Western blot and RT-PCR, while the control group and TNF-α group had no expression. The cell apoptosis rates of TNF-α group, Ad-hIGF-1 group, and control group were 34.24% ± 4.60%, 6.59% ± 1.03%, and 0.40% ± 0.15%, respectively. The early apoptosis rates of TNF-α group, Ad-hIGF-1 group, and control group were 22.16% ± 2.69%, 5.03% ± 0.96%, and 0.49% ± 0.05%, respectively; the late cell apoptosis rates were 13.96% ± 4.86%, 10.68% ± 3.42%, and 0.29% ± 0.06%, respectively. Compared with TNF-α group, the cell apoptosis rates of Ad-hIGF-1 group and control group were significantly reduced (P lt; 0.05); the cell apoptosis rate of Ad-hIGF-1 group was significantly higher than that of control group (P lt; 0.05). Conclusion Ad-hIGF-1 could inhibit the apoptosis of nucleus pulposus cells induced by TNF-α.

      Release date:2016-08-31 04:05 Export PDF Favorites Scan
    • UPREGULATION OF Bcl-2/ADENOVIRUS E1B 19-kDa-INTERACTING PROTEIN 3 AND TRANSLOCATION TOMITOCHONDRIA IN NUCLEUS PULPOSUS CELLS INDUCED BY NUTRITION DEPRIVATION

      【Abstract】 Objective To detect the expression of Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3)in cell death induced by nutrition deprivation in nucleus pulposus cells so as to further understand the mechanism of deathin nucleus pulposus cells. Methods Two adult Sprague Dawley rats, male or female, weighing 150-200 g, were involvedin this experiment. The cells isolated from rat caudal disc were cultured under the condition of L-DMEM culture media,10%FBS, and 21%O2 (control group) and under the condition of DMEM-free glucose culture media, no serum, and 1% O2(experimental group). The expressions of BNIP3 gene and protein were detected by real-time fluorescent quantitative PCR,immunofluorescence staining, and Western blot. The cell apoptosis rate and mitochondrial membrane potential were measuredby flow cytometry at 24, 48, and 72 hours after culture. Results The expression of BNIP3 decreased in the control group;the expressions of BNIP3 showed an increasing tendency with time in the experimental group, and BNIP3 combined withmitochondria. Significant differences were observed in the expressions of BNIP3 gene and protein between 2 groups at the othertime (P lt; 0.05) except that no significant difference was observed in the expression of BNIP3 gene at 24 hours (P gt; 0.05). Thecell apoptosis rate and mitochondrial membrane potential were significantly lower in the experimental group than those in thecontrol group (P lt; 0.05). Conclusion Upregulation of BNIP3 and translocation to mitochondria may be involved in nucleuspulposus cell death in nutrition deprivation.

      Release date:2016-08-31 04:22 Export PDF Favorites Scan
    • EXPRESSION OF p16INK4a IN NUCLEUS PULPOSUS AND ITS EFFECT ON DEGENERATED INTERVERTEBRAL DISCS

      ObjectiveTo investigate the expression of p16INK4a in nucleus pulposus (NP) and to clarify its relationship with intervertebral disc degeneration so as to provide evidence for biological repair of intervertebral disc. MethodsThe NP specimens were obtained from 17 patients with intervertebral disc degeneration undergoing discectomy, who aged 40-50 years (mean, 45.4 years). Based on the preoperative MRI, there were 10 cases of grade Ⅲ degeneration, and 7 cases of grade IV degeneration. Cell senescence was evaluated by detecting senescence-associated β-galactosidase (SA-β-gal) activity. Senescence marker (p16INK4a) and disc degeneration markers [A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS 5), Aggrecan, and Sryrelated HMG box transcri ption factor 9 (Sox-9)] were determined in the NP specimens with immunohistochemistry and Western blot. The correlation between ADAMTS 5 and p16INK4a was analyzed. ResultsClustered distribution of green SA-β-gal-positive cells was seen in the NP with grade Ⅲ and IV degeneration. A few single round SA-β-gal-positive NP cells (NPCs) wrapped by the layered extracellular matrix were also seen in the NP with grade Ⅲ degeneration. It was difficult to see single distribution of NPCs in the NP with grade IV degeneration. The percentage of SA-β-gal-positive cells was 22.7%±5.4% and 37.1%±7.6% in the NP with grade Ⅲ and IV degeneration respectively, showing significant difference (t=-9.666, P=0.000). The percentages of p16INK4a-positive and ADAMTS 5-positive NPCs in the NP with grade IV degeneration were significantly higher than those with grade Ⅲ degeneration (P<0.05). The percentages of Aggrecan-positive and Sox-9-positive NPCs in the NP with grade IV degeneration were significantly lower than those in the NP with grade Ⅲ degeneration (P<0.05). The protein expressions of Aggrecan and Sox-9 in the NP with grade IV degeneration were significantly lower than those in the NP with grade Ⅲ degeneration (P<0.05). The NP with grade IV degeneration showed significantly higher protein expressions of p16INK4a and ADAMTS 5 (P<0.05). Importantly, there was a good correlation between p16INK4a and ADAMTS 5 protein expressions (r=0.908, P=0.000). ConclusionPremature senescent NPCs increase in the NP with the advancing disc degeneration. The expression of p16INK4a and its association with degeneration grades suggest that the p16INK4a may play a significant role in the pathogenesis of intervertebral disc degeneration.

      Release date: Export PDF Favorites Scan
    • Expression and correlation analysis of hypoxia inducible factor 1α and autophagy related molecules in rat nucleus pulposus cells under hypoxia

      ObjectiveTo investigate the expression and correlation of hypoxia inducible factor 1α (HIF-1α) and autophagy related molecules (Beclin1 and LC3B) in rat nucleus pulposus cells under hypoxia in vitro.MethodsThe nucleus pulposus cells were extracted from the nucleus pulposus of healthy adult Sprague Dawley rats and passaged. The 3rd generation cells were identified by HE staining and collagenase type Ⅱ immunofluorescence staining and randomly divided into 4 groups. The cells in group A were cultured for 8 hours under normal oxygen condition (37℃, 5%CO2, 20%O2); the cells in group B were cultured for 8 hours under hypoxia condition (37℃, 5%CO2, 1%O2); the cells in group C were transfected with HIF-1α-small interfering RNA and cultured for 8 hours under hypoxia condition; and the cells in group D were cultured with autophagy inhibitor 3-MA for 8 hours under hypoxia condition. Western blot and real-time fluorescence quantitative PCR (qRT-PCR) were used to detect the expressions of HIF-1α and autophagy related molecules (Beclin1 and LC3B) in all groups.ResultsHE staining of the 3rd generation nucleus pulposus cells showed that the cytoplasm was light pink and the nucleus was blue black, and the collagenase type Ⅱ immunofluorescence staining was positive. Western blot and qRT-PCR results showed that the relative expressions of HIF-1α, Beclin1, and LC3B proteins and genes in group B were significantly higher than those in group A (P<0.05); the relative expressions of HIF-1α, Beclin1, and LC3B proteins and genes in group C were significantly lower than those in group B (P<0.05). There was no significant difference in the relative expression of HIF-1α protein and gene between groups B and D (P>0.05); while the relative expressions of Beclin1 and LC3B proteins and genes in group D were significant lower than those in group B (P<0.05).ConclusionHypoxia can induce the expressions of HIF-1α and autophagy related molecules (Beclin1 and LC3B) in rat nucleus pulposus cells, and HIF-1α in rat nucleus pulposus cells under hypoxia is related to the expression of autophagy related molecules, that is, down-regulation of HIF-1α can significantly reduce the expression of autophagy related molecules, while the down-regulation of autophagy levels under hypoxia has no or little effect on the expression of HIF-1α.

      Release date:2020-04-15 09:18 Export PDF Favorites Scan
    • ISOLATION AND IDENTIFICATION OF RAT INTERVERTEBRAL DISC NUCLEUS PULPOSUS CELLS AT DIFFERENT SEGMENTS AND COMPARATIVE STUDY ON BIOLOGICAL CHARACTERISTICS

      ObjectiveTo isolate nucleus pulposus cells (NPCs) from the caudal and lumbar intervertebral disc of rat, and to identify the morphology and to compare the characteristics. MethodsThe whole spine was separated from 8-week-old Sprague Dawley rats under the sterile conditions. NPCs of different segments (lumbar group: L1,2-L6, S1; caudal group: C1,2-C17,18) were cultured by adherent cultivation approach. Cellular morphologic change was noted by HE staining and continuous observation under inverted phase contrast microscope. Besides, the aggrecan and collagen type Ⅱexpression were examined by toluidine blue and immunocytochemistry staining respectively. The total protein contents, senescence level, and the cell viability of passage 1-5 (P1-5) were detected. The growth curves of the P1 cells in lumbar and caudal groups were determined by cell counting kit 8. ResultsThe NPCs were isolated and identified successfully. The adherence time of the primary cells (the cell fusion reached 90%) in lumbar group was significantly longer than that in caudal group in primary generation (P<0.05). HE staining showed that cytoplasm was pink with the blue nucleus. Lumbar disc NPCs were spindle. The larger caudal disc NPCs were polygonal or irregular. Toluidine blue staining showed that the proteoglycan was stained as blue. In the cytoplasm of cells, collagen type Ⅱwas stained as brown surround the blue-black nucleus. The cell viability had no significant difference between lumbar and caudal groups and between different passages in the same group (P>0.05). The caudal disc NPCs reached their logarithmic growth phase after 3 days of culture, while the cells in lumbar segments did after 4-5 days of culture. The cell proliferation in caudal segments was more than that in lumbar segments at 3-9 days (P<0.05). The difference in the total protein contents was not significant between cells at P1-5 in 2 groups (P>0.05), and the caudal disc NPCs had higher protein contents than lumbar disc NPCs (P<0.05). There was no significant difference in cell senescence rate between cells at P1, P2, and P3 in 2 groups (P>0.05), but significant difference was shown in senescence rate between 2 groups in cells at P4 and P5 (P<0.05). ConclusionCaudal disc NPCs have a better status, which is more suitable for experiment as a seed cell than the lumbar disc NPCs in the same generation.

      Release date: Export PDF Favorites Scan
    • AN IN VITRO STUDY ON BIOLOGICAL CHARACTERISTICS OF BONE MARROW MESENCHYMAL STEM CELLS IN MICROENVIRONMENT OF PREMATURE SENESCENCE OF NUCLEUS PULPOSUS CELLS

      ObjectiveTo investigate the biological characteristics of bone marrow mesenchymal stem cells (BMSCs) in microenvironment of premature senescence of nucleus pulposus cells (NPCs) so as to lay a foundation for the repair of intervertebral disc degeneration by BMSCs transplantation. MethodsHuman degenerative nucleus pulposus and normal bone marrow were collected, and then NPCs and BMSCs were isolated, cultured, and identified. The 3rd passage BMSCs and the 1st passage NPCs with premature senescence were co-cultured without contact in the Transwell culture system. NPCs to BMSCs ratio was 75%:25% (group A), 50%:50% (group B), and 0:100% (group C). The morphological changes of BMSCs were observed by inverted phase contrast microscopy and transmission electron microscopy. At 3 and 6 days after co-culture, cell counting kit 8 was used to detect cell viability, flow cytometry was used to observe the cell cycle and detect DNA metabolism after BrdU labeling. Cell senescence was also evaluated by detecting senescence associated β-galactosidase (SA-β-gal) activity. ResultsThe typical morphology of cell senescence was seen in groups A and B, especially in group A. At 3 and 6 days after co-culture, the cell survival rate of group A was significantly lower than that of group B (P<0.05). At 3 days after co-culture, the proportion of cells in G1 phase in group A was significantly higher than that in groups B and C (P<0.05), the proportion of cells in S phase in group A was significantly lower than that in groups B and C (P<0.05). At 6 days, the proportion of cells in G1 phase in group A was about 81.0%, and the proportion of cells in S phase and G2 phase decreased, showing significant difference when compared with groups B and C (P<0.05); the proportion of cells in G1 phase in group B was about 74.4%, showing significant difference when compared with group C (P<0.05). BrdU content in group A was significantly lower than that in groups B and C at 3 and 6 days after co-culture (P<0.05), but no significant difference was found between groups B and C at 3 days (P>0.05); Brdu content in group B was also significantly reduced when compared with group C (P<0.05) at 6 days. At 6 days, SA-β-gal activity was significantly increased in groups A and B, and significant difference was shown in SA-β-gal positive cell number between groups (P <0.05). ConclusionPremature senescence of NPCs can down-regulate the proliferation capacity of co-cultured BMSCs by the paracrine effect. The greater proportion of NPCs with premature senescence is, the earlier senescence of BMSCs will be induced.

      Release date: Export PDF Favorites Scan
    2 pages Previous 1 2 Next

    Format

    Content

  • <table id="gigg0"></table>
  • 松坂南