ObjectiveTo investigate the influence of ISOBAR TTL dynamic internal fixation system on degeneration of adjacent intervertebral disc by MRI measurement of lumbar nucleus pulposus volume in treating lumbar degenerative disease after operation. MethodsBetween March 2010 and October 2011, 34 patients with lumbar intervertebral disc herniation (23 cases of paracentral type and 11 cases of lateral type) underwent operation with ISOBAR TTL dynamic internal fixation system for fixation of single segment, and the clinical data were analyzed retrospectively. There were 20 males and 14 females, aged 39-62 years (mean, 47.5 years). The disease duration was 6-18 months (mean, 14 months). Involved segments included L4, 5 in 21 cases and L5, S1 in 13 cases. The X-ray films and MRI images were taken at 6, 12, 18, 24, 36, and 48 months after surgery. Based on X-ray films, the height of intervertebral space was measured using angle bisectrix method. The nucleus pulposus volume was measured based on the MRI scan. The postoperative change of nucleus pulposus volume and intervertebral disc height were used to evaluate the influence of ISOBAR TTL system on degeneration of adjacent intervertebral disc nucleus pulposus. ResultsThirty patients were followed up 48 months. The height of intervertebral space showed no significant difference between at pre-and post-operation (P>0.05). The nucleus pulposus volume increased after operation, showing no significant difference at 6, 12, and 18 months when compared with preoperative value (P>0.05), but significant difference was found at 24, 36, and 48 months when compared with preoperative value (P < 0.05). The height of nucleus pulposus increased after operation but the width was decreased; the values showed no significant difference at 6, 12, and 18 months when compared with preoperative ones, but showed significant difference at 24, 36, and 48 months when compared with preoperative ones (P < 0.05). The diameter of nucleus pulposus at 18, 24, 36, and 48 months after operation was significantly langer than that at preoperation (P < 0.05). ConclusionISOBAR TTL dynamic internal fixation system can prevent or delay the degeneration of intervertebral discs.
Objective To determine whether the transforminggrowth factor β1 (TGF-β1) is a key regulatory molecule required for an increase or a balance of extracellular matrix (ECM) and DNA synthesis in the goat passaged nucleus pulposus (NP) cells. Methods The NP cells isolated from the goat intervertebral discs were cultured in vitro for a serial of passages and transfected with the replicationincompetent adenoviral vectors carrying the human TGF-β1 (hTGF-β1) or lacZ genes. Then, they were cultured in monolayer or alginate bead 3dimensional (3-D) systems for 10 days.The changes in the production and the molecular components of ECM that occurredin the NP cells transfected with Ad/hTGF-β1 or the controls were evaluated by Westernblot and absorbance of glycosaminoglycan (GAG)-Alcian Blue complexes. Differences of DNA synthesis in the variant cells and culture systems were assessed by fluorometric analysis of the DNA content. ResultsA quantitation in the variant culture systems indicated that in monolayers the NP cells at Passage 3 transfected with Ad/hTGF-β1 had a much higher cell viability and more DNA synthesis(P<0.05); however, in the alginate 3-D culture system, the NP cells transfected with Ad/hTGF-β1 did not have any significant difference from the controls(P>0.05). The Western blotting analysis ofthe protein sample isolated from the variant cells for TGF-β1, type Ⅱ collagen, and Aggrecan expression indicated that in the monolayers and alginate 3-D culture systems the NP cells at Passage 3 transfected with Ad/hTGF-β1 revealed much higher protein levels than the controls(P<0.05); whereas the type Ⅰcollagen content was much lower than the controls (P<0.05), but a significatly increased ratio of type Ⅱ/type Ⅰ collagen was found in both of the cell culture systems(P<0.05). The GAG quantification also showed a positive result in both the cell culture systems and the NP cells at Passage 3 transfected with Ad/hTGF-β1 had a much higher GAG content than the controls(P<0.05). Conclusion To a greaterextent, hTGF-β1 can play a key role in maintaining the phenotype of the NP cells and can still have an effect of the phenotypic modulation after a serial of the cell passages. The NP cells that are genetically manipulated to express hTGF-β1 have a promising effect on the restoration of the intervertebral disc defects. The NP cells transfected with Ad/hTGF-β1 cultured in the 3-D alginate bead systems can show a nearly native phenotype.
Objective To detect the cell density, apoptotic rate, and the expressions of BNIP3 in nucleus pulposus of degenerative intervertebral disc of rabbits, so as to further understand the mechanism of intervertebral disc degeneration. Methods Thirty male New Zealand white rabbits, aging 3 months and weighing (2.3 ± 0.2) kg, were divided into sham operation group (control group, n=10) and intervertebral disc degeneration model group (experimental group, n=20). Interbertebral disc degeneration models were establ ished by puncture of L3,4, L4,5, and L5,6 intervertebral discs in the experimental group; intervertebral discs were exposed only and then sutured in the control group. The degree of intervertebral disc degeneration was evaluated according to Pfirrmann classification by MRI at 4 and 8 weeks after establ ishing models. Apototic cells were determined by TUNEL and histological methods, and the immunohistochemical staining was performed to detect the expressions of BNIP3 in nucleus pulposus of intervertebral disc. Results MRI examination showed that the signal intensity decreased gradually at 4 and 8 weeks in the experimental group. There wassignificant difference in the degree of intervertebral disc degeneration between at 4 weeks and at 8 weeks in the experimental group (P lt; 0.05). The histological observation and TUNEL test showed that high density of nucleus pulposus cells and only a few apoptotic cells were observed in the control group; at 4 and 8 weeks, the density of nucleus pulposus cells decreased gradually with more apoptotic cells in the experimental group. There were significant differences in the nucleus pulposus cell density and positive rate of TUNEL staining between 2 groups, and between at 4 weeks and at 8 weeks in the experimental group (P lt; 0.05). The expression of BNIP3 of nucleus pulposus was negative in the control group; however, in the experimental group, the positive expression rates of BNIP3 of nucleus pulposus (the gray values) were 13.45% ± 1.16% and 32.00% ± 1.82% (194.32 ± 4.65 and 117.54 ± 2.11) at 4 and 8 weeks respectively, showing significant differences (P lt; 0.05). Conclusion The decrease of cell density in nucleus pulposus is involved in the development of intervertebral disc degeneration. Cell apoptosis is one of reasons in the decrease of nucleus pulposus cell; BNIP3 is involved in nucleus pulposus cell apoptosis in the degenerative intervertebral disc.
Objective To explore a practical method of culturing discs organ system by observing the changes of the nucleus pulposus after the whole intervertebral discs (including cartilage end-plate, nucleus pulposus, and annulus fibrous)were cultivated. Methods A total of 335 intervertebral discs were taken out completely from 60 healthy SD rats (about150 g) aged 5-6 weeks of clear grade and rinsed by high osmotic sal ine solution containing heparin, then put to the culture plate after being divided into 5 groups randomly. The whole intervertebral discs were cultured with high osmotic (410 mOsmol/ kg) culture medium and changed the medium once every day, then the cell viabil ity (n=15), HE staining (n=15), Safranin O staining (n=15), and immunohistochemistry staining (n=2) were observed at 0, 3, 7, 14, and 21 days; RT-PCR result (n=5) was observed at 0, 3, 7, and 14 days. Results The cell viabil ity was not changed significantly within 14 days (P gt; 0.05) and was significantly lower at 21 days than at other time points (P lt; 0.01). The immunohistochemistry staining results for collagen type II were positive in nucleus pulposus cells at every time point. HE staining showed that the tissue integrity and morphology of the whole intervertebral discs were not changed within 14 days. Safranin O staining showed no significant difference in the matrix grey scale within 14 days (P gt; 0.05) and significant differences between 21 days and 0-14 days (P lt; 0.05). RT-PCR results showed that the mRNA expression of collagen type I increased with time, but the expressions of collagen type II, aggrecan, and decorin decreased, showing significant differences in the mRNA expressions of the matrix protein at each time point (P lt; 0.05). Conclusion High osmotic sal ine solution containing heparin could be used to cultivate the whole intervertebral discs, it is an ideal model for futher studies on physiology and pathology of intervertebral discs.
【Abstract】 Objective To detect the expression of Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3)in cell death induced by nutrition deprivation in nucleus pulposus cells so as to further understand the mechanism of deathin nucleus pulposus cells. Methods Two adult Sprague Dawley rats, male or female, weighing 150-200 g, were involvedin this experiment. The cells isolated from rat caudal disc were cultured under the condition of L-DMEM culture media,10%FBS, and 21%O2 (control group) and under the condition of DMEM-free glucose culture media, no serum, and 1% O2(experimental group). The expressions of BNIP3 gene and protein were detected by real-time fluorescent quantitative PCR,immunofluorescence staining, and Western blot. The cell apoptosis rate and mitochondrial membrane potential were measuredby flow cytometry at 24, 48, and 72 hours after culture. Results The expression of BNIP3 decreased in the control group;the expressions of BNIP3 showed an increasing tendency with time in the experimental group, and BNIP3 combined withmitochondria. Significant differences were observed in the expressions of BNIP3 gene and protein between 2 groups at the othertime (P lt; 0.05) except that no significant difference was observed in the expression of BNIP3 gene at 24 hours (P gt; 0.05). Thecell apoptosis rate and mitochondrial membrane potential were significantly lower in the experimental group than those in thecontrol group (P lt; 0.05). Conclusion Upregulation of BNIP3 and translocation to mitochondria may be involved in nucleuspulposus cell death in nutrition deprivation.
Objective To introduce the research of nucleus pulposus cells for treating intervertebral disc degeneration. Methods The original articles in recent years about nucleus pulposus cells for treating intervertebral disc degeneration were extensively reviewed, and retrospective and comprehensive analysis was performed. Results Nucleus pulposus cells are not only simply a remnant of embryonic notochordal cells, but have also an important influence on the well-being of the whole disc. The biological treatment strategies aim to regenerate the disc by either trying to improve the micro-enviroment within the disc or to increase the popoulation of the nucleus pulposus, which includes transplanting mesenchymal stem cellsto differentiate into nucleus-l ike cells in the degenerated intervertebral disc. Conclusion Nucleus pulposus cells or ucleus pulposus l ike cells based cell transplantation methods prove to be a promising and real istic approach for the intervertebral disc regeneration.
Objective To research the biological feature of intervertebral disc nucleus pulposus cells (NPCs) by observing cell morphous, phenotype and ultramicrostructure. Methods The NPCs from 2-week-old healthy rabbit werecultured in DMEM/F12 medium with 15% FBS. The cell biological features were observed by inverted phase contrast microscope, l ight microscope, electron microscope, cell vital ity assay, cell growth curve and cells staining after harvest and during the periods of culturing the primary, the 1st passage and 2nd passage. Results The results of inverted phase contrast microscope showed that the primary passage adhered at 5 days, grew exponentially at 6-8 days, and were subcultured after covering the bottom at 17 days. The phenotype of the NPCs changed from polygon to long fusiform with passage increased; the vital ity assay showed that there was about 95%-97%, 98%-100%, 100% and 75%-80% NPCs survived just after isolation from intervertebral disc, during the period of culturing the primary, the 1st passage and the 2nd passage, respectively. The toluidine blue staining of the NPCs was bly positive, and HE staining showed clear cell nucleus and cytoplasm. The I collagen immunohistochemical staining showed negative results in the 1st passage, but II collagen immunohistochemical staining and safranin O staining showed positive results. However, the I collagen immunohistochemical staining showed positive result in the 2nd passage, and II collagen immunohistochemical staining and safranin O staining showed weakly positive results. The cell growth curve showed the same as the growth course of cell cultured in vitro. The results of TEM showed that there were many glycogen particles and less chondriosomes in the primary passage. With the increased passage, the glycogen particles decreased and the chondriosomes increased, and cell organ became swell. Conclusion This study clarifies the biological feature of NPCs in vitro, providing the experimental basis for the seed cell research of the nuclues pulposus tissue.
Objective To introduce the research of cell transplantation for treating intervertebral disc degeneration. Methods The original articles in recent years about cell transplantation for treating intervertebral disc degeneration were extensively reviewed, and retrospective and comprehensive analysis was performed. Results Transplantation of intevertebraldisc-derived cells or BMSCs by pure cell transplantation or combined with collagen scaffold into intervertebral disc couldexpress nucleus pulposus-l ike phenotype. All the cells transplanted into intervertebral disc could increase extracellular matrix synthesis and rel ieve or even inhibit further intervertebral disc degeneration. Conclusion Cell transplantation for treating intervertebral disc degeneration may be a promising approach.
Objective To compare the growth and extracellular matrix biosynthesis of nucleus pulposus cells (NPCs)and bone marrow mesenchymal stem cells (BMSCs) in thermo-sensitive chitosan hydrogel and to choose seed cells for injectable tissue engineered nucleus pulposus. Methods NPCs were isolated and cultured from 3-week-old New Zealand rabbits (male or female, weighing 150-200 g). BMSCs were isolated and cultured from bone marrow of 1-month-old New Zealand rabbits (male or female, weighing 1.0-1.5 kg). The thermo-sensitive chitosan hydrogel scaffold was made of chitosan, disodium β glycerophosphate, and hydroxyethyl cellulose. Then, NPCs at the 2nd passage or BMSCs at the 3rd passage were mixed with chitosan hydrogel to prepare NPCs or BMSCs-chitosan hydrogel complex as injectable tissue engineered nucleus pulposus. The viabil ities of NPCs and BMSCs in the chitosan hydrogel were observed 2 days after compound culture. The shapes and distributions of NPCs and BMSCs on the scaffold were observed by scanning electron microscope (SEM) 1 week after compound culture. The histology and immunohistochemistry examination were performed. The expressions of aggrecan and collagen type II mRNA were analyzed by RT-PCR 3 weeks after compound culture. Results The thermo-sensitive chitosan hydrogel was l iquid at room temperature and sol idified into gel at37 (after 15 minutes) due to crossl inking reaction. Acridine orange/propidium iodide staining showed that the viabil ity rates of NPCs and BMSCs in chitosan hydrogel were above 90%. The SEM observation demonstrated that the NPCs and BMSCs distributed in the reticulate scaffold, with extracellular matrix on their surfaces. The results of HE, safranin O histology and immunohistochemistry staining confirmed that the NPCs and BMSCs in chitosan hydrogel were capable of producing extracellular matrix. RT-PCR results showed that the expressions of collagen type II and aggrecan mRNA were 0.564 ± 0.071 and 0.725 ± 0.046 in NPCs culture with chitosan hydrogel, and 0.713 ± 0.058 and 0.852 ± 0.076 in BMSCs culture with chitosan hydrogel; showing significant difference (P lt; 0.05). Conclusion The thermo-sensitive chitosan hydrogel has good cellular compatibil ity. BMSCs culture with chitosan hydrogel maintains better cell shape, prol iferation, and extracellular matrix biosynthesis than NPCs.
Objective To isolate and culture the chondroid cells and notochord cells from New Zealand rabbit immature nucleus pulposus (NP) in monolayer, and to valuate the responsiveness of rabbit disc-derived chondroid cells to notochord cells with respect to cell prol iferation and phenotype. Methods The NP cells were released from the minced immature NP of 6 New Zealand rabbits (4-week-old) by 0.2% collagenase II digestion. The chondroid cells and notochord cells were purified by discontinuous gradient density centrifugation. The chondroid cells were cultured alone (group A) andco-cultured with notochord cells (group B) (1 ∶ 1), and cell prol iferation and phenotype including proteoglycan and collagen II were evaluated. The cells in both groups were observed by the inverted microscope, and the survival rates of the primary and passage cells were detected by toluidine blue staining. The growth curves of the second passage cells in both groups were determined by MTT. Besides, the expressions of proteoglycan and collagen II of the primary and passage cells were examined by toluidine blue and immunocytochemistry staining. Results The notochord cells and chondroid cells were isolated and purified. With the diameter of 10-15 μm, the notochord cell had abundant intracytoplasmic vesicles, while the chondroid cell, with the diameter of 4-6 μm, had no intracytoplasmic vesicle. The cell survival rate was 89.0%-95.3% in group A and 91.3%-96.3% in group B. There was no significant difference between the same passages in both groups (P gt; 0.05). The co-cultured cells (group B) increased in cell prol iferation compared with the chondroid cells alone (group A) in repeated experiments. The cells in group A reached their logarithmic growth phase after 3-4 days of culture, while the cells in group B did after 2 days of culture. The cell prol iferation in group B was more than that in group A after 4-day culture (P lt; 0.05). The cocultured cells retained their phenotype for 5 passages, while parallel-cultured chondroid cells lost the expression of proteoglycan and collagen II after the third passage. Conclusion The notochord cells are conducive for the prol iferation and phenotypekeeping of the chondroid cells and may play a key role in preventing degeneration of the disc.