• <table id="gigg0"></table>
  • west china medical publishers
    Keyword
    • Title
    • Author
    • Keyword
    • Abstract
    Advance search
    Advance search

    Search

    find Keyword "Neural stem cell" 26 results
    • THE OPTIMIZATION OF THE METHOD OF CULTURING NEURAL STEM CELLS IN NEONATAL RAT BRAIN

      Objective To establish a better method of isolating andculturing ofneural stem cells(NSCs) in neonatal rat brain. Methods Tissue of brain was isolated from neonatal rats. Different medium and culture concentration were used toculture NSCs of neonatal rat. The culture concentration used were 1×10 4, 1×105, 1×106and 1×107/ml respectively. Ingredient of medium was classified into group 1 to 8 respectively according to whether to add 2% B27, epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) as well as the difference in culture concentration. The cells were induced to differentiate asto be confirmed as NSCs, and then were checked by phase contrast microscopy and identified by immunocytochemistry. Results The cells isolated and cultured gathered into neurospheres. The cells were capable of proliferating and maintaining longterm survival in vitro. The cells could be differentiated into neurons and glia.It was to the benefit of the survival of NSCs to add 5% fetal bovine serum(FBS)into the medium at the beginning of the culturing. When 10% FBS was added intothe medium, the neurospheres differentiated quickly. When concentration 1×106/ ml was used, the growth rate of the cells was the highest of all the concentrations. Reasonably higher cell concentration promoted the proliferation of NSCs. It was necessary to add 2% B27, EGF, and bFGF into the medium. The cells had the best growth when 2% B27, 20 ng/ml bFGF and 20 ng/ml EGF were added into the culture medium. EGF and bFGF had cooperative effect. Conclusion A better method of isolating and culturing of NSCs in neonatal rat brain is established and the foundation for future research is laid.

      Release date:2016-09-01 09:29 Export PDF Favorites Scan
    • ISOLATION AND CULTURE OF NEURAL STEM CELLS IN INJURED REGION OF COMPRESSIVE SPINAL CORD INJURY IN ADULT RAT

      Objective To investigate the division, prol iferation and differentiation abil ities of nestin+/GFAP+cell after spinal cord injury and to identify whether it has the characteristic of neural stem cells (NSCs). Methods Twelvemale SD rats, aged 8 weeks and weighing 200-250 g, were randomized into 2 groups (n=6 per group): model group inwhich the spinal cord injury model was establ ished by aneurysm cl ip compression method, and control group in which no processing was conducted. At 5 days after model ing, T8 spinal cord segment of rats in each group were obtained and the gray and the white substance of spinal cord outside the ependymal region around central tube were isolated to prepare single cellsuspension. Serum-free NSCs culture medium was adopted to culture and serum NSCs culture medium was appl ied to induce differentiation. Immunohistochemistry detection and flow cytometry were appl ied to observe and analyze the type of cells and their capabil ity of division, prol iferation and differentiation. Results At 3-7 days after injury, the model group witnessed a plenty of nestin+/GFAP+ cells in the single cell suspension, while the control group witnessed few. Cell count of the model and the control group was 5.15 ± 0.71 and 1.12 ± 0.38, respectively, indicating there was a significant difference between two groups (P lt; 0.01). Concerning cell cycle, the proportion of S-phase cell and prol iferation index of the model group (15.49% ± 3.04%, 15.88% ± 2.56%) were obviously higher than those of the control group (5.84% ± 0.28%, 6.47% ± 0.61%), indicating there were significant differences between two groups (P lt; 0.01). In the model group, primary cells gradually formed threedimensional cell clone spheres, which were small in size, smooth in margin, protruding in center and positive for nestin immunofluorescence staining, and large amounts of cell clone spheres were harvested after multi ple passages. While in the control group, no obvious cell clone spheres was observed in the primary and passage culture of single cell suspension. At 5 days after induced differentiation of cloned spheres in the model group, immunofluorescence staining showed there were a number of galactocerebroside (GaLC) -nestin+ cells; at 5-7 days, there were abundance of β-tubul in III-nestin+ and GFAP-nestin+ cells; and at 5-14 days, GaLC+ ol igodendrocyte, β-tubul in II+ neuron and GalC+ cell body and protruding were observed. Conclusion Nestin+/GFAP+ cells obtained by isolating the gray and the white substance of spinal cord outside the ependymal region around central tube after compressive spinal cord injury in adult rat has the abil ity of self-renewal and the potential of multi-polarization and may be a renewable source of NSCs in the central nervous system.

      Release date:2016-09-01 09:05 Export PDF Favorites Scan
    • RESEARCH PROGRESS OF NEURAL STEM CELLS SIGNAL TRANSDUCTION PATHWAY

      To summarize Notch, basic hel ix-loop-hel ix (bHLH) and Wnt gene signal transduction pathways in the process of differentiation and development of neural stem cells. Methods The l iterature on the gene signal transduction pathway in the process of differentiation and development of neural stem cells was searched and then summarized and analyzed. Results The formation of Nervous System resulted from common actions of multi-signal transduction pathways. There may exist a fixed threshold in the compl icated selective system among Notch, bHLH and Wnt gene signal transduction pathways. Conclusion At present, the specific gene signal transduction pathway of multi pl ication and differentiation of neural stem cells is still unclear.

      Release date:2016-09-01 09:12 Export PDF Favorites Scan
    • EFFECT OF WNT-1 ON THE PROCESS OF INDUCING NEURAL STEM CELLS INTO NEURONS BY ALL- RANSRETINOIC ACID IN VITRO

      To explore the expression of Wnt-1 during the process of inducing neural stem cells (NSCs) into neurons by using all-trans-retinoic acid (ATRA) in vitro and the effect of Wnt-1 on NSCs differentiation. Methods NSCs isolated from cerebral cortex of SD rat embryo (12-16 days’ gestation) were cultured. The concentration of cells at passage 3 were adjusted to 1 × 106 cells /mL and treated with ATRA at 0.5, 1.0, 5.0 and 10.0 μmol/L, respectively. Differentiation ratio of NSCsinto neurons in each group was detected by double-labelling immunofluorescence technique and flow cytometry, and 1.0 μmol/ L was selected as the best concentration for ATRA to promote NSCs differentiation. In experimental group, NSCs at passage 3 were cultured with ATRA at 1.0 μmol/L in vitro, and expression of Wnt-1 was detected by immunocytochemistry staining, realtime flurescent quantitive PCR and Western blot at 3, 5, 7 and 9 days after culture, respectively. The cells at passage 3 receiving no ATRA served as control group. Results Immunocytochemistry staining: in the control group, there was l ittle Wnt-1 protein expression; in the experimental group, peak expression of Wnt-1 and numerous positive cells occurred at 3 days after culture, the positive expression of Wnt-1 was still evident at 5 days after culture, and there was significant difference between two groups in integrated absorbance (IA) value at 3 and 5 days after culture(P lt; 0.05), obvious decrease of positive expression of Wnt-1 was evident, and no significant difference was evident between two groups in IA value at 7 and 9 days (P gt; 0.05). Real-time fluorescence quantitative PCR: the relative expression of Wnt-1 mRNA in the control group was 0.021 7 ± 0.072 1; the relative expression of Wnt-1 mRNA in the experimental group at 3, 5, 7 and 9 days was 0.512 2 ± 0.280 0, 0.216 4 ± 0.887 0, 0.038 5 ± 0.299 4 and 0.035 5 ± 0.309 5, respectively, indicating the value decreased over time, and there were significant difference between two groups at 3 and 5 days (P lt; 0.05), and no significant difference at 7 and 9 days (P gt; 0.05) . Western blot detection: specific and visible staining band was noted; in the control group, Wnt-1 protein expression was 0.005 1 ± 0.558 3; in the experimental group, Wnt-1 protein expression at 3, 5, 7 and 9 days was 0.451 7 ± 0.071 3, 0.311 7 ± 0.080 5, 0.007 3 ± 0.052 7 and 0.004 7 ± 0.931 4, respectively, suggesting the value decreased over time; there were significant differences between two groups at 3 and 5 days (P lt; 0.05), and no significant differences at 7 and 9 days (P gt; 0.05). Conclusion With the induction of ATRA at 1.0 μmol/L, Wnt-1 and NSCs differentiation in early stage are positively correlated. Its possible mechanism may rely on the activation of such signals as classic Wnt-1 signal pathway, indicating Wnt-1 relates to the differentation of NSCs into neurons.

      Release date:2016-09-01 09:07 Export PDF Favorites Scan
    • EXPERIMENTAL STUDY ON NEURAL STEM CELL TRANSPLANTATION DELAYING DENERVATED MUSCLEATROPHY

      Objective To observe the delaying effect of neural stem cell (NSC) transplantation on denervated muscle atrophy after peri pheral nerve injury, and to investigate its mechanism. Methods NSCs were separated from the spinal cords of green fluorescent protein (GFP) transgenic rats aged 12-14 days mechanically and were cultured and induced to differentiate in vitro. Thirty-two F344 rats, aged 2 months and weighed (180 ± 20) g, were randomized into two groups (n=16 per group). The animal models of denervated musculus triceps surae were establ ished by transecting right tibial nerve and commom peroneal nerve 1.5 cm above the knee joints. In the experimental and the control group, 5 μL of GFP-NSCsuspension and 5 μL of culture supernatant were injected into the distal stump of the tibial nerve, respectivel. The generalcondition of rats after operation was observed. At 4 and 12 weeks postoperatively, the wet weight of right musculus tricepssurae was measured, the HE staining, the Mallory trichrome staining and the postsynaptic membrane staining were adopted for the histological observation. Meanwhile, the section area of gastrocnemius fiber and the area of postsynaptic membrane were detected by image analysis software and statistical analysis. Results The wounds in both groups of animals healed by first intension, no ulcer occurred in the right hind l imbs. At 4 and 12 weeks postoperatively, the wet weight of right musculus triceps surae was (0.849 ± 0.064) g and (0.596 ± 0.047) g in the experimental group, respectively, and was (0.651 ± 0.040) g and (0.298 ± 0.016) g in the control group, respectively, showing a significant difference (P lt; 0.05). The fiber section area of the gastrocnemius was 72.55% ± 8.12% and 58.96% ± 6.07% in the experimental group, respectively, and was 50.23% ± 4.76% and 33.63% ± 4.41% in the control group, respectively. There were significant differences between them (P lt; 0.05). Mallory trichrome staining of muscle notified that there was more collagen fiber hyperplasia of denervated gastrocnemius in the control group than that in the experimental group at 4 and 12 weeks postoperatively. After 12 weeks of operation, the area of postsynaptic membrane in the experimental group was (137.29 ± 29.14) μm2, which doubled that in the control group as (61.03 ± 11.38) μm2 and was closer to that in normal postsynaptic membrane as (198.63 ± 23.11) μm2, showing significant differences (P lt; 0.05). Conclusion The transplantation in vivo of allogenic embryonic spinal cord NSCs is capable of delaying denervated muscle atrophy and maintaining the normal appearance of postsynaptic membrane, providing a new approach to prevent and treat the denervated muscle atrophy cl inically.

      Release date:2016-09-01 09:17 Export PDF Favorites Scan
    • DIFFERENTIATION AND PROLIFERATION POTENTIAL OF NEURAL STEM CELLS IN SUBVENTRICULAR ZONE OF MICE IN VITRO

      ObjectiveTo establish the system of isolation, cultivation, and identification of the neural stem cells (NSCs) from subventricular zone (SVZ) of neonatal mice so as to seek for the appropriate seed cells for potential therapeutic interventions of neurological disorders. MethodsNSCs were isolated enzymatically and mechanically from SVZ of neonatal mice and cultured. The cellular morphology was observed by inverted microscopy. Immunocytochemical stainings of anti-Nestin and anti-SOX-2 were used to identify NSCs of passage 3. To study the differentiation of NSCs, NSCs were plated into 24-wells in the medium supplemented without epidermal growth factor (EGF) and basic fibroblastic growth factor (bFGF) for 3 or 7 days. To compare the differentiation and proliferation potential of NSCs with different cultivation time, the BrdU pulse-labeling method and MTT test were used. To identify neurons and astrocytes, the anti-β-tubulin Ⅲ (Tuj-1) and anti-glial fibrillary acidic protein (GFAP) staining were used. ResultsThe cells of the SVZ can be isolated and cultured in vitro, and these cells began to form neurospheres after cultured for 3 days at primary passage. While cultured for 7 days, these cells formed more neurospheres, and the volume of the neurospheres became bigger than neurospheres cultured for 3 days. In addition, after cultured for 7 days, the phenomena of fusion of neurospheres and adherent differentiation of neurospheres were observed under inverted microscope. These cells were provided with the typical phenotype of NSCs. The immunofluorescence staining results revealed that these cells showed positive immunoreactivity to Nestin and SOX-2. During the 4 hours BrdU pulse, the number of proliferated NSCs cultured for 3 days (75.817±2.961) was significantly higher than that of NSCs cultured for 7 days (56.600±4.881) (t=3.366, P=0.028). The results of MTT assay revealed that the absorbance (A) value of NSCs cultured for 3 days (0.478±0.025) was significantly higher than that of NSCs which were cultured for 7 days (0.366±0.032)(t=2.752, P=0.011). After cultivated without EGF and bFGF, the percentage of Tuj-1 and GFAP positive cells in NSCs was 23.1%±3.7% and 23.7%±3.8% for 3 days and was 40.1%±3.6% and 37.1%±4.5% for 7 days, respectively, all showing significant differences (t=3.285, P=0.030; t=3.930, P=0.017). ConclusionThe NSCs from SVZ of neonatal mice have potentials of self-renewal and multipotential differentiation in vitro. With different cultivation time, the potentials of proliferation and differentiation of NSCs are different.

      Release date: Export PDF Favorites Scan
    • Experimental study of lentivirus-mediated Nogo extracellular peptide residues 1-40 gene and neurotrophin 3 gene co-transduction in neural stem cells

      ObjectiveTo explore the feasibility of co-transduction and co-expression of Nogo extracellular peptide residues 1-40 (NEP1-40) gene and neurotrophin 3 (NT-3) gene into neural stem cells (NSCs).MethodsNSCs were derived from the cortex tissue of Sprague Dawley rat embryo. The experiment included 5 groups: no-load lentiviral vector transducted NSCs (group A), NEP1-40 transducted NSCs (group B), NT-3 transducted NSCs (group C), NEP1-40 and NT-3 corporately transducted NSCs (group D), and blank control (group E). Target genes were transducted into NSCs by lentiviral vectors of different multiplicity of infection (MOI; 5, 10, 15) for different time (24, 48, 72 hours). Fluorescent microscope was used to observe the expression of fluorescence protein and acquire the optimum MOI and optimum collection time. Real-time fluorescence quantitative PCR and Western blot tests were utilized to evaluate the gene expressions of NEP1-40 and NT-3 in NSCs and protein expressions of NEP1-40 and NT-3 in NSCs and in culture medium.ResultsThe optimum MOI for both target gene was 10 and the optimum collection time was 48 hours. The real-time fluorescence quantitative PCR and Western blot results showed that the mRNA and protein relative expressions of NEP1-40 in groups B and D were significantly higher than those in groups A and C (P<0.05), but no significant difference was found between groups B and D, and between groups A and C (P>0.05). The mRNA and protein relative expressions of NT-3 in groups C and D were significantly higher than those in groups A and B (P<0.05), but no significant difference was found between groups A and B, and between groups C and D (P>0.05).ConclusionNEP1-40 and NT-3 gene can be successfully co-transducted into NSCs by the mediation of lentiviral vector. The expressions of the two target genes are stable and have no auxo-action or antagonism between each other.

      Release date:2018-04-03 09:11 Export PDF Favorites Scan
    • Effect of serum on the differentiation of neural stem cells

      ObjectiveTo investigate the effect of serum on the differentiation of neural stem cells.MethodsThe neural stem cells were isolated from the embryonic hippocampus tissues of Sprague Dawley rats at 14 day of pregnancy. After culturing and passaging, the 3rd generation cells were identified by immunocytochemical staining. Then, the cells were divided into 3 groups according to the concentrations of fetal bovine serum (FBS) used in the differentiation cell culture medium: 5% (group A), 1% (group B), 0 (group C), respectively. The other components of the culture media in 3 groups were the same. Cell viability was determined by using the Live/Dead cell staining at 8 days; the expressions of glial cell marker [glial fibrillary acidic protein (GFAP)] and neuronal marker (β-Ⅲ Tubulin) were determined and analyzed by immunocytochemical staining and real-time fluorescent PCR at 4 and 8 days of culture.ResultsBased on cell morphology and immunocytochemical staining, neural stem cells were identified. Cells were growing well with no death in all groups. With decreasing FBS concentration, the expression of GFAP was significantly decreased on both protein and mRNA level, whereas the expression of β-Ⅲ Tubulin was evidently increased. The staining of each group at 8 days was more obvious than that at 4 days. There were significant differences in mRNA expressions of GFAP and β-Ⅲ Tubulin at 4 and 8 days between groups (P<0.05).ConclusionSerum can promote the differentiation of neural stem cells into glial cells. At the same time, it inhibits the differentiation of neural stem cells into neurons, the lower the serum concentration, the smaller the effect.

      Release date:2018-02-07 03:21 Export PDF Favorites Scan
    • EFFECTS OF NEUROGENESIN 1 GENE ON FUNCTIONAL RECOVERY OF SPINAL CORD INJURY IN RATS AND ITS MECHANISM

      Objective To explore the effects of Neurogenesin 1 (Ng1) gene on functional recovery after spinal cord injury (SCI) and its mechanism. Methods Thirty-six rats (aging 4 months, weighing 230 g and being male or female), were randomly divided into two groups: experimental group (n=18) and control group (n=18). After spinal cord contusive injury at T10 level was made in all these rats using modified Allen’s method, Ng1 recombinant plasmid and blank plasmid were transfectedinto the damaged areas of exprimental group and control group respectively by Alzet pumps. At 1 day, 1 week, 2 weeks, 3 weeks, and 4 weeks after SCI, Basso-Beattle-Bresnahan (BBB) Rating Scale was used to observe the recovery of motor function. At 1 week after injury, the expressions of Ng1 mRNA and protein in injured spinal cord were detected by RT-PCR and Western blot techniques. And at 2 and 4 weeks, double immunofluorescence and histopathologic examinations were performed to study the prol iferation of the adult endogenous neural stem cells and pathological change after SCI. Results At 1-4 weeks after SCI, the BBB scores in the exprimental group was significantly higher than that in control group (P lt; 0.05), and at 4 weeks the BBB score of the experimental group (16.80 ± 1.79) was significantly higher than that of the control group (9.60 ± 1.67), (P lt; 0.01). RTPCR and Western blot showed that the mRNA and protein expressions of Ng1 were observed in the exprimental group and no expression was seen in the control group. Histologic observation showed that the morphology of spinal cord and neurons in the exprimental group was better than that in the control group and was close to the normal tissue. The mean number of Nestin+/ BrdU+ newborn endogenous neural stem cells in the exprimental group was significantly more than that in control group (P lt; 0.05). Conclusion Ng1 gene could promote the prol iferation of endogenous neural stem cells and protect the injured neurons, which enhances the repair of the motor function after SCI.

      Release date:2016-08-31 05:47 Export PDF Favorites Scan
    • INFLUENCE OF Nogo EXTRACELLULAR PEPTIDE RESIDUES 1-40 GENE MODIFICATION ON SURVIVAL AND DIFFERENTIATION OF NEURAL STEM CELLS AFTER TRANSPLANTATION

      Objective To investigate the influence of Nogo extracellular peptide residues 1-40 (NEP1-40) gene modification on the survival and differentiation of the neural stem cells (NSCs) after transplantation. Methods NSCs were isolated from the cortex tissue of rat embryo at the age of 18 days and identified by Nestin immunofluorescence. The lentiviruses were transduced to NSCs to construct NEP1-40 gene modified NSCs. The spinal cords of 30 Sprague Dawley rats were hemisected at T9 level. The rats were randomly assigned to 3 groups: group B (spinal cord injury, SCI), group C (NSCs), and group D (NEP1-40 gene modified NSCs). Cell culture medium, NSCs, and NEP1-40 gene modified NSCs were transplanted into the lesion site in groups B, C, and D, respectively at 7 days after injury. An additional 10 rats served as sham-operation group (group A), which only received laminectomy. At 8 weeks of transplantation, the survival and differentiation of transplanted cells were detected with counting neurofilament 200 (NF-200), glial fibrillary acidic portein (GFAP), and myelin basic protein (MBP) positive cells via immunohistochemical method; the quantity of horseradish peroxidase (HRP) positive nerve fiber was detected via HRP neural tracer technology. Results At 8 weeks after transplantation, HRP nerve trace showed the number of HRP-positive nerve fibers of group A (85.17 ± 6.97) was significantly more than that of group D (59.25 ± 7.75), group C (33.58 ± 5.47), and group B (12.17 ± 2.79) (P lt; 0.01); the number of groups C and D were significantly higher than that of group B, and the number of group D was significantly higher than that of group C (P lt; 0.01). Immunofluorescent staining for Nestin showed no obvious fluorescence signal in group A, a few scattered fluorescent signal in group B, and b fluorescence signal in groups C and D. The number of NF-200-positive cells and MBP integral absorbance value from high to low can be arranged as an order of group A, group D, group C, and group B (P lt; 0.05); the order of GFAP-positive cells from high to low was group B, group D, group C, and group A (P lt; 0.05); no significant difference was found in the percentage of NF-200, MBP, and GFAP-positive cells between group C and group D (P gt; 0.05). Conclusion NEP1-40 gene modification can significantly improve the survival and differentiation of NSCs after transplantation, but has no induction on cell differentiation. It can provide a new idea and reliable experimental base for the study of NSCs transplantation for SCI.

      Release date:2016-08-31 04:05 Export PDF Favorites Scan
    3 pages Previous 1 2 3 Next

    Format

    Content

  • <table id="gigg0"></table>
  • 松坂南