ObjectiveTo investigate the expression of mitochondrial transcription factor A (TFAM) in colon cancer and the effect of its expression on proliferation of colon cancer cell. MethodsThirty cases of colon cancer in the First Affiliated Hospital of Sun Yat-sen University from March 2013 to April 2013 were studied. TFAM mRNA was detected both in colon cancer tissue and para-cancer tissue by real-time PCR. TFAM mRNA and protein were detected in normal colon cell strain and colon cancer strains SW480, HT-29, and HCT116 by real-time PCR and Western blot, respectively. The proliferation of SW480 cells was evaluated after up-regulating TFAM. ResultsThe expression of TFAM mRNA in the colon cancer tissue was significantly higher than that in the para-cancer tissue (P < 0.000 1). The expressions of TFAM mRNA were obviously increased in the SW480, HT-29, and HCT116 cells as compared with the normal colon cell strain (P value was 0.000 8, 0.002 3, and 0.000 6, respectively), among which the most notable increase was detected in the SW480 cells. The expressions of TFAM protein were obviously increased in the SW480, HT-29, and HCT116 cells as compared with the normal colon cell strain (P value was 0.000 2, 0.003 8, and 0.001 6, respectively), among which the most notable increase was detected in the SW480 cells. After up-regulating TFAM by plasmid transfection, the proliferation of the pcDNA3.1-TFAM-SW480 cell was increased significantly as compared with the pcDNA3.1-SW480 cell at 96 h and 120 h after transfection by the MTT test (P < 0.000 1). The proliferation of the pcDNA3.1-TFAM-SW480 cell was increased significantly as compared with the pcDNA3.1-SW480 cell at 48 h after transfection by the BrdU test (P < 0.001 0). ConclusionTFAM expression is high in colon cancer. Up-regulated TFAM could promote the proliferation of colon cancer cells.
Objective To investigate the preventive and therapeutic effects and the mechanisms of pyrrol idine dithiocarbamate (PDTC) on the atrophy of denervated skeletal muscle. Methods Thirty adult Wistar rats of either gender, weighing (200 ± 10) g were randomly divided into 3 groups: group A (n=6, control group), group B (n=12, denervation group), and group C (n=12, PDTC treatment group). The sciatic nerves of the rats were only exposed without cutting off in group A, and the rats were made denervated gastrocnemius models in groups B and C. PDTC of 100 mg/(kg?d) was injected peritoneally in group C and an intraperitoneal injection of the same amount normal sal ine was given in group B. After 14 and 28 days, the gastrocnemius was harvested to measure the ratio of muscle wet weight; the levels of nuclear factor of κB (NF-κB)p65 protein and the opening of the mitochondrial permeabil ity transition pore (MPTP) in the gastrocnemius were detectedrespectively by Western blot and laser confocal scanning microscope; and the apoptotic cells in atrophic muscle were measured with TUNEL. Results The ratio of muscle wet weight in group A was 1.039 ± 0.115, and it significantly decreased in groups B and C (P lt; 0.05); after 14 and 28 days of operation, the ratio of muscle wet weight in group C significantly increased when compared with those in group B (P lt; 0.05). The expression of NF-κB p65 protein in group A was 0.224 ± 0.041; the expressions of NF-κB p65 in groups B and C significantly increased when compared with that in group A (P lt; 0.05); however, the expression of NF-κB p65 in group C was significantly lower than that in group B (P lt; 0.05). The MPTP fluorescence intensity in group A was 31.582 ± 1.754; the MPTP fluorescence intensity was significantly lower in groups B and C than in group A (P lt; 0.05), and the MPTP fluorescence intensity in group C was significantly higher than that in group B (P lt; 0.05). The rate of apoptosis in group A was 4.542% ± 0.722%; after 14 and 28 days of operation, the rates of apoptosis significantly increased when compared groups B and C with group A, and signiticantly decreased when compared group C with group B (P lt; 0.05). Conclusion PDTC can retard denervated skeletal muscle atrophy, and the effect may have a relationship with its inhibition on NF-κB, the opening of the MPTP, and the ratio of apoptosis.
ObjectiveTo analyze the variation of perioperative concentration of mitochondrial DNA (mtDNA) in circulation system after cardiac surgery with cardiopulmonary bypass (CPB). MethodsBetween July and December 2014, 40 continuous patients underwent aortic valve replacement (AVR) and mitral valve replacement (MVR) in Department of Cardiovascular Surgery, West China Hospital, Sichuan University, including 16 males and 14 females with their mean age of 48.7±11.0 years and mean body weight of 59.0±6.9 kg. Perioperative mtDNA concentrations of circulatory blood were tested at different time points:before general anesthesia (T1), 1 min before CPB (T2), reperfusion of the ascending aorta (T3), 6 h after operation (T4), 24 h after operation (T5), 48 h after operation (T6). ResultsAll the surgeries were successfully performed without early death. Postoperative complications were low cardiac output syndrome in 3 cases and acute kidney failure in 1 cases. The concentration of mtDNA in circulation system rising gradually after CPB. The mtDNA concentration of T3, T4 and T5 were significantly higher than T1 (P < 0.05). The peak level was observed at T5 and the mtDNA concentration of T6 was still significantly higher than that of T1 (P < 0.05). ConclusionThe concentration of mtDNA in circulation system was rising after CPB and peak level appeared at 24 h after CPB.
ObjectiveMitochondrial encephalomyopathy is a series of diseases that drag in central nervous system and generalized muscles. The pathogenesis of the disease is lack of ATP for the dysfunction of mitochondria. The misdiagnosis rate of the disease is high and the purpose of this study is to improve the recognition and diagnosis of mitochondrial encephalomyopathy and thus, clinicians could take rational treatment in time and improve patients' prognosis. MethodsThe clinical data of 11 patients with mitochondrial encephalomyopathy were analyzed including the physical data, clinical presentations, laboratory data, neuroimaging findings, muscle biopsy, genetic testing, treatment and prognosis. Reviewing literature and summarizing the clinical characteristics of mitochondrial encephalomyopathy. ResultsAmong the 11 patients with mitochondrial encephalomyopathy, the mean age was 17 years old. 1 case had family history. 7 cases were misdiagnosed in the first clinic visit. The onset of the 11 cases, 9 were paroxysmal and 2 were hidden. In the course, 10 cases had an epileptic seizure. Among the 9 cases who took the determination of serum lactate, 8 was in high level.9 cases had MRI examination and all found abnormality, 10 patients had EEG examination, and 9 cases found abnormality, 6 cases had muscle biopsy and all found the ragged red fiber(RRF). 6 cases had molecular genetic testing, and all found mutations in mitochondrial DNA. Among the 10 cases who had epileptic seizure, 3 cases can be controlled with single kind of antiepileptic drug. The other 7 cases had a recurrence of epilepsy with single kind of antiepileptic drugs, but can be cotrolled after drug adjusting or drug combination. ConclusionMitochondrial encephalomyopathy is often accompanied by seizure, which is usually found in children, and also often accompanied by systemic muscle symptoms. The clinical manifestations of the disease is not typical, but is complex and varied symptoms, so the clinical misdiagnosis rate is high. Mitochondrial encephalomyopathy mainly involves the main intracranial artery distribution area (parietal lobe, temporal lobe, occipital lobe, etc.) in central nervous system, and can involve more than one part. Patients with mitochondrial myopathy brain are usually detected the elevation of serum lactate levels, but if the lactic acid level is normal, it does not rule out the possibility of the disease, the confirmation of the disease is mainly by muscle biopsy or genetic tests. There is no specific treatment for mitochondrial encephalomyopathy till now, and it still give priority to symptomatic treatment. And the prognosis is poorer.
Objective To review the research progress of mitochondrial dynamics mediated by optic atrophy 1 (OPA1) in skeletal system diseases. MethodsThe literatures about OPA1-mediated mitochondrial dynamics in recent years were reviewed, and the bioactive ingredients and drugs for the treatment of skeletal system diseases were summarized, which provided a new idea for the treatment of osteoarthritis. Results OPA1 is a key factor involved in mitochondrial dynamics and energetics and in maintaining the stability of the mitochondrial genome. Accumulating evidence indicates that OPA1-mediated mitochondrial dynamics plays an important role in the regulation of skeletal system diseases such as osteoarthritis, osteoporosis, and osteosarcoma. Conclusion OPA1-mediated mitochondrial dynamics provides an important theoretical basis for the prevention and treatment of skeletal system diseases.
Purpose To investigate the relationship between mitochondrial DNA 11778 mutation and clinical characteristics of patients with Laber is hereditary optic neuropathy(LHON). Methods PCR RFLPs (MaeⅢ) and mutation specific primer PCR(MSP-PCR) were used simultaneously to detect mitochondrial DNA 11778 mutation. Results Among 10 subjects who habored 11778 mutation,one was a carrier and nine were patients with LHON.Of the nine patients,six were males and three were females.The age of onset ranged from 12 to 25 years old and the onset interval of the two eyed varied between 0 to 6 months. The visual acuity was CF/10cm-0.1 except one who lost her vision after delivery but recovered gradually.The results of visual field,VEP and color vision were abnormal but ERG and systemic status were all normal. Conclusion Molecular biological detection of the ten subjects showed that they all habored mtDNA 11778 mutation.The existence of carrier and visual recovery imlied that mtDNA mutation was a primary cause of LHON,but other factors such as endocrine disorder might influence the pathogenesis of LHON. (Chin J Ocul Fundus Dis,1998,14:156-158)
Objective To explore the feasibility of identifying clonal origin of hepatocellular carcinoma (HCC) by analyzing the mitochondrial DNA D-Loop region variations. Methods Forty-two patients with a total of 112 HCC nodules consequentially hospitalized for radical resection of HCC in the department of hepatobiliary surgery of the First Affiliated Hospital of Guangxi Medical University from April 2004 to August 2007 were included for study group (multinodular HCCs). Control group included 20 cases of HCC (40 samples) hospitalized in the same period that consisted of two sub-groups: control groupⅠconsisted of 16 cases of single nodular HCC that each had two pieces of inconsecutive tumor tissues and control groupⅡconsisted of 4 cases of HCC with portal vein tumor embolus whose tumor tissues and portal vein tumor embolus were collected simultaneously. Normal control included 5 patients who were donors for liver transplantation or underwent liver trauma without any liver disease. Polymerase chain reaction (PCR) and direct sequencing were applied to study the mtDNA D-Loop region. The sequences of multinodular lesions were compared among different groups. Results For all the 42 cases of the study group, basic group variations appeared in 131 sites (131/1 122, 11.7%, the number 1 122 was the length of mtDNA D-Loop) with point mutation in 15 sites, insert in 9 sites, and deletion in 16 sites. And of all the variations in the study group, 98 were polymorphism. In study group, 20 cases were categorized as multicentric occurrence (MO) based on their variant mtDNA D-Loop sequences in each nodule from the same patient. And 22 cases were characterized as intrahepatic metastasis (IM) based on the identical mtDNA D-Loop sequences found in each nodule from the same patient. In all 20 cases in the control group, the inconsecutive tumor tissues or the portal vein tumor embolus and original tumors shared identical mtDNA D-Loop sequences. For the normal control group, basic group variations appeared in 14 sites, and they were all polymorphism including a new polymorphism (NT 479 Agt;G). Conclusions There is a high rate of changes in mtDNA D-Loop region. And our study speculates a novel discrimination of MO and IM origins among multinodular HCCs using PCR and direct sequencing of the mtDNA D-Loop sequences.
Mitochondrial quality control includes mechanisms such as mitochondria-derived vesicles, fusion / fission and autophagy. These processes rely on the collaboration of a variety of key proteins in the inner and outer membranes of mitochondria to jointly regulate the morphological structure and functional integrity of mitochondria, repair mitochondrial damage, and maintain the homeostasis of their internal environment. The imbalance of mitochondrial quality control is associated with leukemia. Therefore, by exploring the mechanisms related to mitochondrial quality control of various leukemia cells and their interactions with immune cells and immune microenvironment, this article sought possible targets in the treatment of leukemia, providing new ideas for the immunotherapy of leukemia.
Objective To investigate the protective effects of ischemic postconditioning (IPo) on ischemiareperfusion (I/R) myocardium and the relationship with mitochondrial adenosine triphosphate (ATP) sensitive K+ channels (mitoKATP) and provide evidences to the development of druginduced postconditioning. Methods Langendorff models were established in 40 Wistar rats which were divided into 5 groups by random number table with 8 rats in each group. Normal control group(NC group): the rat hearts were continuously reperfused by KrebsHenseleit bicarbonate buffer (K-HB) for 100 min without any other treatment; I/R group: the rat hearts underwent a 40-min global ischemia followed by a 60-min reperfusion; IPo group: after a 40-min global ischemia, the process of 10-second reperfusion followed by a 10-second ischemia was repeated 6 times, then there was a continuous 58min reperfusion; 5-hydroxydecanoic acid(5-HD) group: after a 40min global ischemia, hearts with 5HD(100 μmol/L) K-HB were reperfused for 15min and then perfused without 5HD for 45min;IPo+5-HD group: after a 40-min global ischemia, the process that the isolated hearts with 5-HD(100 μmol/L) KHB were reperfused for 10second followed by a 10second ischemia was repeated 6 times, then the hearts with 5-HD(100 μmol/L) KHB were continuously [CM(159mm]perfused for 13-min followed by reperfusion without 5-HD(100 μmol/L) K-HB for 45-min. The cardiac function,coronary flow(CF), cardiac troponin I(cTnI) content in coronary effluent, the area of acute myocardial infarction (AMI) and myocardial ultrastructure were observed. Results Left ventricular developed pressure(74.3±3.3 mm Hg vs. 57.1±3.3 mm Hg,t=1300, P=0.000),+dp/dtmax(1 706.6±135.6 mm Hg/s vs. 1 313.3±96.2 mm Hg/s,t=6.28,P=0.000),-dp/dtmax(1 132.8±112.1 mm Hg/s vs. 575.7±67.7 mm Hg/s,t=13.48, P=0.000) and CF(6.49±0.30 ml/min vs. 3.70±0.24 ml/min,t=28.6,P=0.000) in IPo group were higher than those in I/R group. Left ventricular enddiastolic pressure(10.9±1.7mm Hg vs. 26.2±1.5 mm Hg,t=-19.21, P=0000)and cTnI content in coronary effluent (0.62±0.01 ng/ml vs. 0.71±0.01 ng/ml, t=-12.00,P=0.000) were lower than those in I/R group; the area of AMI decreased 20.8% compared with that in I/R group (Plt;0.05). The myocardial protective effect in IPo+5HD group was similar with that in IPo group, but lower than that in IPo group. The electron microscope showed that IPo and IPo+5HD could reduce myocardial fiber damage and mitochondrial damage caused by I/R. Conclusion IPo can protect I/R myocardium, which is achieved mainly by activating mitoK-ATP channels.
Objective To explore the relationship between microsatellite instability (MSI) and gastric cancer. Methods The related literatures at home and abroad were consulted and reviewed. Results The MSI is the replication errors caused by mismatch repair system defects. Gastric cancer which exhibiting MSI has characteris clinicopathological feature and prognosis. Detection the MSI of precancerous lesions and gastric cancer tissues can evaluate the risk and prognosis of gastric cancer. MSI include nuclear microsatellite stability (nMSI) and mitochondrial microsatellite instability (mtMSI). Conclusions MSI plays an important role in the occurrence and development of gastric cancer. MSI may become a important indicator to forecast precancerosis risks and clinical prognosis of gastric cancer.