ObjectiveTo explore the effects on osteogenic differentiation of adipose derived stem cells (ADSCs) by simultaneously down-regulating Noggin combined with up-regulating bone morphogenetic protein 14 (BMP-14) in vitro. MethodsPrimary ADSCs were isolated and expanded in vitro from 5 Sprague Dawley rats (weighing, 250-300 g). ADSCs were transfected with lentiviral (Lv)-enhanced green fluorescent protein in group A (control group), with Lv-BMP-14 in group B, and with Lv-BMP-14 and Lv-Noggin shRNA in group C. BMP-14 and osteogenesis-related genes[collagen type I, alkaline phosphatase (ALP), and osteocalcin (OCN)] mRNA expression levels were detected by real time fluorescence quantitative PCR at 3, 7, and 14 days after transfection. Alizarin red staining for calcium nodules was also employed to assess the osteogenic ability of co-transfected ADSCs. ResultsAt 3 days after transfection, no significant difference was found in BMP-14 mRNA expression among groups P>0.05). At 7 and 14 days after transfection, BMP-14 mRNA expression was significantly higher in group C than groups A and B, and in group B than group A (P<0.05). At 3 days after transfection, collagen type I, ALP, and OCN mRNA expressions of group C were significantly higher than those of groups A and B (P<0.05), but no significant difference was shown between groups A and B P>0.05). At 7 and 14 days, collagen type I, ALP, and OCN mRNA expressions were higher in group C than groups A and B, and in group B than group A, showing significant difference (P<0.05) except collagen type I mRNA expression at 7 days between groups A and B P>0.05). The results of alizarin red staining showed that the amount of calcium nodules presented an increased tendency in the order of group A, group B, and group C. ConclusionBMP-14 is capable of enhancing osteogenic differentiation of ADSCs. A combination of inhibiting Noggin gene expression and enhancing BMP-14 gene expression in ADSCs can significantly strengthen osteogenic differentiation capability, showing significant synergistic effect.
【 Abstract】 Objective To construct a lentiviral expression vector carrying Nogo extra cellular peptide residues 1-40(NEP1-40) and to obtain NEP1-40 efficient and stable expression in mammalian cells. Methods The DNA fragment ofNEP1-40 coding sequence was ampl ified by PCR with designed primer from the cDNA l ibrary including NEP1-40 gene, and then subcloned into pGC-FU vector with in-fusion technique to generate the lentiviral expression vector, pGC-FU-NEP1-40. The positive clones were screened by PCR and the correct NEP1-40 was confirmed by sequencing. Recombinant lentiviruses were produced in 293T cells after the cotransfection of pGC-FU-NEP1-40, and packaging plasmids of pHelper 1.0 and pHelper 2.0. Green fluorescent protein (GFP) expression of infected 293T cells was observed to evaluate gene del ivery efficiency. NEP1-40 protein expression in 293T cells was detected by Western blot. Results The lentiviral expression vector carrying NEP1-40 was successfully constructed by GFP observation, and NEP1-40 protein expression was detected in 293T cells by Western blot. Conclusion The recombinant lentivirus pGC-FU-NEP1-40 is successfully constructed and it lays a foundation for further molecular function study of NEP1-40.
Objective To construct gene-modified hepatic stem cells (WB-F344 cells), which have rat IL-13 gene and can secrete the recombinant rat IL-13 cytokine in the cells. Methods Firstly, the rat IL-13 sequences were synthesized. Then the sequences were amplificated in bacterium coli after recombinated with pWPXL-MOD plasmid. After PCR and sequence identification, the positive clones were packaged into lentivirus. After detecting the virus titer, the WB-F344 cells with constructed lentivirus vector with rat IL-13 gene were cultured, then the valid targets (expression level of the IL-13) were detected by real time-PCR and Western blot in cultured WB-F344 cells on 5 days. Results The valid DNA of rat IL-13 was recombinated and packaged in lentivirus vector. The recombinant gene sequence was correct by checking with gene sequence test. Then the recombinant was introducted into the WB-F344 cells cultures. The best multiplicity of infection (MOI) value for effective transfection was 5. IL-13 had been detected on day 5 after transfection by checking with real-time PCR and Western blot. Conclusion The recombinant rat IL-13 gene with lentivirus vector is constructed and gene-modified WB-F344 cells are cultured successfully, which can be used in next animal experiment.
ObjectiveTo construct a lentiviral vector carrying rat sirt1 gene and observe the expression of sirt1 in retinal ganglion cell (RGC) of rat. MethodsRat sirt1 cDNA was inserted into pLV5 vector. After identification by sequencing analysis and PCR, the recombinant sirt1expressinglentivirus vector was packaged by cotransfecting 293T cells with packaged plasmid.Then pLV5-sirt1 was used to infect the cultured Sprague-Dawley rat RGC cell in vitro.The expressions of sirt1 protein and mRNA in infected rat RGC were detected by quantitative real-time PCR and Western blot. ResultsThe sirt1 expression vector pLV5 was successful constructed and sequence was proved to be correct. The expression of sirt1 protein and mRNA in RGC was significantly increased than that in cells infected with control lentiviruses(P < 0.05). ConclusionWe have successful constructed a sirt1 expression lentivirus vector pLV5-sirt1 and it can increase the expression of sirt1 protein and mRNA in the rat retinal ganglion cells.
ObjectiveTo investigate the expression changes and the repair effect of mitogen and stress- activated protein kinase 1 (MSK1) on spinal cord injury (SCI) in rats.MethodsOne hundred and twenty male Sprague Dawley (SD) rats (weighing 220-250 g) were used for the study, 70 of them were randomly divided into sham-operation group and SCI group (n=35), the rats in SCI group were given SCI according to Allen’s method, and the sham-operation group only opened the lamina without injuring the spinal cord; spinal cord tissue was collected at 8 hours, 12 hours, 1 day, 2 days, 3 days, 5 days, and 7 days after invasive treatment, each group of 5 rats was used to detect the expression of MSK1 and proliferating cell nuclear antigen (PCNA) by Western blot assay. Another 20 SD rats were grouped by the same method as above (n=10). In these rats, a negative control lentiviral LV3NC dilution was injected at a depth of approximately 0.8 mm at the spinal cord T10 level. The results of transfection at 1, 3, 5, 7, and 14 days after injection were observed under an inverted fluorescence microscope to determine the optimal transfection time of the virus. The other 30 SD rats were randomly divided into group A with only SCI, group B with a negative control lentiviral LV3NC injected after SCI, and group C with MSK1 small interfering RNA (siRNA) lentivirus injected after SCI, with 10 rats each group. The Basso, Beatlie, Bresnahan (BBB) score of hind limbs was measured at 1, 3, 5, 7, and 14 days after treatment; spinal cord tissue collected at the optimal time point for lentivirus transfection was detected the expression changes of MSK1 and PCNA by Western blot and the localization by immunofluorescence staining of MSK1 and PCNA proteins.ResultsWestern blot assay showed that there was no significant changes in the expression of MSK1 and PCNA at each time points in the sham-operation group. In the SCI group, the expression of MSK1 protein was gradually decreased from 8 hours after injury to the lowest level at 3 days after injury, and then gradually increased; the expression change of PCNA protein was opposite to MSK1. The expression of MSK1 in SCI group was significantly lower than that in the sham-operation group at 1, 2, 3, and 5 days after injury (P<0.05), and the expression of PCNA protein of SCI group was significantly higher than that of the sham-operation group at 8 hours and 1, 2, 3, 5, and 7 days after injury (P<0.05). The fluorescence expression of both the SCI group and the sham-operation group has be found and peaked at 7 days. There was a positive correlation between fluorescence intensity and time in 7 days after transfection. With the prolongation of postoperative time, the BBB scores of groups A, B, and C showed a gradually increasing trend. The BBB score of group C was significantly lower than those of groups A and B at 5, 7, and 14 days after treatment (P<0.05). After transfection for 7 days, Western blot results showed that the relative expression of MSK1 protein in group C was significantly lower than that in groups A and B (P<0.05); and the relative expression of PCNA protein was significantly higher than that in groups A and B (P<0.05). Immunofluorescence staining showed that MSK1 was expressed in the nuclei of the spinal cord and colocalized with green fluorescent protein, neuronal nuclei, and glial fibrillary acidic protein (GFAP). The relative expression area of MSK1 positive cells in group C was significantly higher than that in group B (P<0.05), and the relative expression areas of PCNA and GFAP positive cells were significantly lower than those in group B (P<0.05).ConclusionLentivirus-mediated MSK1 siRNA can effectively silence the expression of MSK1 in rat spinal cord tissue. MSK1 may play a critical role in the repair of SCI in rats by regulating the proliferation of glial cells.
ObjectiveTo obtain rat hair follicle stem cells (rHFSCs) which can constantly and highly express vascular endothelial growth factor 165 (VEGF165), and to observe the expression of VEGF165 gene in rat HFSCs. MethodsThe cirri skin of 1-week-old Sprague Dawley rat was harvested and digested by using combination of Dispase and type IV collagenases. The bulge was isolated under microscope. The rHFSCs were cultured by tissue block method. After purified by rapid adhering on collagen type IV, the growth curve of different generations rHFSCs was drawn. The cells were identified by immunofluorescence staining and real time quantitative PCR (RT-qPCR) analysis that tested the expression level of correlated genes. Lentivirus of pLV-internal ribosome entry site (IRES)-VEGF165-enhanced green fluorescent protein (EGFP) (experimental group) and pLV-IRES-EGFP empty vector (control group) was packaged by calcium transfected method and the rHFSCs were transfected. The green fluorescent protein expression was observed by inverted fluorescence microscope, and VEGF165 mRNA and protein expressions were detected using RT-PCR and Western blot. ResultsThe rHFSCs which were isolated, cultured, and purified were like the "slabstone", and had strong adhesion ability and colony formation ability. The purified cells were in latent growth phase at 2-3 days; they were in exponential growth phase at 5-6 days. The expressions of cytokeration 15 (CK15), integrin α6, and integrin β1 (markers of HFSCs) were positive by immunocytochemistry. The RT-qPCR analysis showed that CK15, CK19, integrin α6, and integrin β1 expressed highly, but CD34 (a marker of epidermal stem cells) and CK10 (a marker of keratinocyte) expressed lowly. After 14 days, the transfection efficiency was up to 85.76%±1.91%. RT-PCR analysis and Western blot showed that VEGF165 mRNA and protein expressions were positive in experimental group, and were negative in control group. ConclusionThe rHFSCs with high purity and strong proliferation ability can be obtained by using microscope combined with tissue cultivation and rapid cell adhesion on collagen type IV. The rHFSCs with high expression of VEGF165 can be successfully obtained by lentiviral transfection. This method provides good seeding cells for tissue engineering to construct artificial hair follicles, blood vessels, and skins.
ObjectiveTo observe the effect of lentivirus-mediated cyclooxygenase 2 (COX-2) and Aggrecanase-1 silencing and insulin-like growth factor 1 (IGF-1) in BMSCs after injecting into the knee joint cavity in cynomolgus monkeys with knee osteoarthritis (OA). MethodsBMSCs were isolated from the bone marrow of 10 donors. The lentivirus vector expressing genes of COX-2, Aggrecanase-1, and IGF-1 were constructed, and transfected into the third generation human BMSCs at 40 multiplicity of infection (virus group); BMSCs transfected with lentivirus-empty vector served as blank-virus group. The growth status and number of BMSCs were observed under inverted phase contrast microscope, and normal BMSCs were used as normal control group. At 1 week after transfected, the mRNA expressions of COX-2, Aggrecanase-1, and IGF-1 were detected with RT-PCR. Nine 3-year-old cynomolgus monkeys were selected to establish the OA model according to Hulth modeling method, and were randomly divided into 3 groups (n=3). At 6 weeks after remodeling, the right knee joint cavity was injected accordingly with 1 mL BMSCs (about 1×107 cells) in virus group and blank-virus group, with 1 mL of normal saline in the blank control group; the left knee served as normal controls. The general condition was observed after injection; at 1, 4, and 6 weeks, the concentrations of prostaglandin E2 (PGE2), IL-1, Aggrecanase-1, and IGF-1 of double knee liquid were detected with ELISA; at 6 weeks, MRI, general observation, histology method, and immunohistochemistry method were used to detect the knee cartilage changes and the expressions of COX-2, Aggrecanase-1, and IGF-1 were measured with RT-PCR. ResultsNo significant difference was found in cell morphology and growth curve between 2 groups after transfection. By RT-PCR, COX-2, and Aggrecanase-1 expressions were significantly reduced, IGF-1 expression was significantly increased in virus group when compared with normal control group and the blank-virus group (P < 0.05). All monkeys survived to the end of the experiment after injection. When compared with blank-virus group and blank control group, the concentrations of PGE2, Aggrecanase-1, and IL-1 significantly decreased and the concentration of IGF-1 significantly increased in the virus group (P < 0.05), but the indicators in 3 groups were significantly higher than those in the normal control group (P < 0.05). MRI showed that abnormal articular surface with high density could be found in virus group, blank-virus group, and blank control group, while the virus group had the minimum area. Gross observation and histological observation showed that the cartilage morphology of virus group, blank-virus group, and blank control group was accordance with early OA articular cartilage changes, but virus group was better than blank-virus group and blank control group in repair degree, whose improved Pineda score was significantly lower (P < 0.05). Immunohistochemical staining showed that the virus group had deeper dyeing with occasional brown particles and more chondrocytes than blank-virus group and blank control group. By RT-PCR, COX-2 and Aggrecanase-1 mRNA expressions of cartilage in virus group were significantly decreased, and IGF-1 expression was significantly increased when compared with blank control group and the blank-virus group (P < 0.05). ConclusionLentivirus-mediated multi-genes co-transfection in BMSCs can inhibit the expressions of COX-2 mRNA and Aggrecanase-1 mRNA, and enhance the IGF-1 mRNA expression, which decreases the concentration of inflammatory factors, and protects the joint cartilage effectively.
ObjectiveTo construct a lentiviral vector-mediated gene-targeted small interfering RNA (siRNA) vector to vascular endothelial growth factor (VEGF), and choose the RNAi with the highest silence efficiency to VEGFA gene. MethodsThree kinds of VEGFA gene-targeted hairpin siRNA was designed (KD1, KD2, KD3), then two complementary oligo nucleotide strand were synthesized and inserted into pGCSIL-GFP vector. After annealing, the recombined vector pGCSIL-GFP-siVEGFA was gotten, which was digested by restrictive enzyme and sequenced, and was co-transfected with the pHelper 1.0 and pHelper 2.0 into 293T cells by Lipofectamine 2000. After that, the new vector was transfected into human umbilical vein endothelial cells (HUVECs), and the mRNA expression level of VEGFA gene in cells was detected by RT-PCR. Then we compared the mRNA expression level of VEGFA gene of the 3 groups. ResultspGCSIL-GFP-siVEGFA was built successfully, and all the siRNA could silence the expression of VEGFA mRNA in the HUVECs, and the relative expressions of VEGFA mRNA to the control group were 0.614±0.043 (KD1), 0.334±0.030 (KD2), and 0.201±0.015 (KD3) respectively. ConclusionWe've successfully constructed the siRNA vector for VEGFA mRNA, which can obviously suppress the expression of VEGFA mRNA.
Objective To observe the influences of uncoupling protein 2 (UCP-2) rs660339 variants transfection on cell proliferation and apoptosis of human umbilical vein endothelial cell (HUVEC). Methods Two UCP-2 green fluorescent protein (GFP) lentivirus constructs were created with the rs660339 locus carried C or T (UCP-2C or UCP-2T), respectively. HUVEC were cultured after lentiviral infection of UCP-2C or UCP-2T. The expression of UCP-2C or UCP-2T was detected with real time polymerase chain reaction. Cell proliferation and cell apoptosis were compared among negative control (NC) group, UCP-2T group and UCP-2C group using CCK-8 cell viability and flow cytometry. Western blot and immunostaining were employed to examine the expression of Bcl-2 gene. Results The lentivirus constructs were successfully created. >80% of the transfected cells were found to express GFP under fluorescent microscope. The mRNA levels of UCP-2 gene were significantly increased (F=29.183,P=0.001) in the UCP-2T group and UCP-2C group. The CCK-8 assay revealed that on day two (F=15.970,P=0.004), day three (F=16.738,P=0.004), day four (F=5.414,P=0.045) post-infection, UCP-2T and UCP-2C group showed significantly greater proliferation than the NC cells. The apoptotic rate in the UCP-2T and UCP-2C group was significantly lower than NC group (F=277.138,P=0.000), and the apoptotic rate of UCP-2T was significantly lower than that of UCP-2C (P=0.003). The protein levels of Bcl-2 in the UCP-2T and UCP-2C group were significantly greater than that in the NC group (F=425.679,P=0.000), and the Bcl-2 expression of UCP-2T was greater than that of UCP-2C (P=0.002). The Bcl-2 density in the UCP-2T and UCP-2C group were greater than that in the NC group (F=11.827,P=0.008), while there was no difference between UCP-2T and UCP-2C group (P=0.404). Conclusion The variants of UCP-2 rs660339 may influence HUVEC proliferation and apoptosis, and UCP-2T showed a stronger effect of inhibiting apoptosis than UCP-2C.
Objective To construct the lentiviral vector containing homo sapiens forkhead box C2 (Foxc2) gene and to detect its expression in bone marrow mesenchymal stem cells (BMSCs) of rabbits. Methods Human Foxc2 gene coding region fragment was obtained by RT-PCR and then cloned into the plasmid of LV-green fluorescent protein (GFP) to prepare Foxc2 lentiviral plasmid. Foxc2 lentiviral plasmid, pGC-LV, pHelper1.0, and pHelper2.0 were co-transfected into 293T cells to obtain recombinant virus containing Foxc2 gene. The lentiviral titer was detected. BMSCs were isolated from bone marrow of rabbit and infected with Foxc2 recombined lentiviral, then the optimum multiplicity of infection (MOI) was determined by detecting the intensity of fluorescence expression. The expression of Foxc2 in the infected BMSCs was determined at 1, 3, and 7 days after transfection by inverted fluorescence microscope and Western blot. After osteogenic induction, Alizarin red staining was done to observe the formation of mineralized nodule. Results The Foxc2 recombinant lentiviral vector was constructed and was confirmed by restriction enzyme digestion and sequencing analysis. It could efficiently transfect 293T cells and express in 293T cells. The lentiviral titer was 2 × 108 TU/mL. The optimum MOI was 200. The inverted fluorescence microscope observation showed that the Foxc2 gene expressed in 84.5% ± 4.8% of infected BMSCs at 3 days after transfection. The expression of Foxc2 in infected BMSCs was stable and high, and increased gradually within 7 days after transfection by Western blot. At 2 weeks after osteogenic induction, Alizarin red staining showed that there were a large number of red calcified matrix deposition in the cytoplasm. Conclusion Foxc2 recombined lentivirus with high viral titer is successfully constructed and packaged, and the Foxc2 gene can be transfected into BMSCs with stable and high expression of Foxc2 in infected cells, and these cells may be applied for gene therapy of avascular necrosis of the femoral head.