ObjectiveTo investigate the clinical effects and influence factors of intravitreal injection of anti-vascular endothelial growth factor (VEGF) drugs in the treatment of idiopathic choroidal neovascularization (ICNV). MethodsThis retrospective study involved 27 patients (27 eyes) with ICNV from July 2012 to July 2015. Patients received intravitreal bevacizumab (1.25 mg), ranibizumab (0.05 mg), additional injection was provided if it was needed. The average follow-up time was 168 weeks. The recovery of best corrected visual acuity (BCVA) and central foveal retinal thickness (CRT) of the affected eye was observed. Follow up once a month after the initial treatment until the lesion was completely absorbed or scarred (the first follow-up period). Follow up every 12 weeks was performed to observe the recurrence of the lesions (the second stage of long-term follow-up). One month after the last injection of the first follow-up period, according to the regression of choroidal neovascularization (CNV), the affected eyes were divided into a significant improvement group (significant improvement group) and an insignificant improvement group (non-significant improvement group)), to analyze the effects of age, course of disease, type of drugs, number of injections, baseline BCVA and CRT on the regression of CNV lesions. According to the results of long-term follow-up, the eyes were divided into recurrence group and non-recurrence group, and the factors affecting the recurrence of CNV lesions were analyzed. Measurement data between groups was compared by using independent sample t test or non-parametric test; count data was compared by using χ2 test. Logistic regression analysis was used to analyze the factors affecting the regression and recurrence of the lesion. ResultsAt baseline and 1 month after the last injection in the first stage, the average BCVA of the eyes were 55.70±15.21 and 73.59±12.08 letters; CRT was 338.3±89.32 and 264.5±47.47 μm, respectively. The BCVA and CRT of the affected eyes were compared at the two time points, and the differences were statistically significant (Z= -3.886, -4.061; P<0.001). The BCVA of the eyes in the significant improvement group and the insignificant improvement group were 65.38±17.27 and 51.63±12.61 letters, respectively; the difference between the two groups of BCVA was statistically significant (t=-2.316, P=0.029). The results of long-term follow-up showed that of the 27 eyes, 6 eyes had recurrence; the average recurrence time was 90.83±49.02 weeks. After another intravitreal injection of anti-VEGF drugs, the CNV lesions was resolved. The average injection times of the relapsed group and the non-relapsed group were 3.67±0.816 and 2.24±0.768, respectively. The average injection times of the relapsed group was significantly higher than that of the non-relapsed group, and the difference was statistically significant (Z=-3.253, P<0.001). There was no statistically significant difference between the two groups of eyes at baseline and CRT at the last follow-up (Z=-1.342,-1.313; P=0.195, 0.195). ConclusionIntravitreal injection of anti-VEGF drugs can effectively increase the regression rate of BCVA and CNV lesions in ICNV eyes; high baseline visual acuity indicates better CNV lesion regression after treatment. Relapsed patients can be effectively improved after re-treatment with anti-VEGF drugs, and CNV recurrence has no significant effect on the final prognosis.
Primary vitreoretinal lymphoma (PVRL) is a rare type of non-Hodgkin's lymphoma with poor prognosis and the optimal treatment has yet to be determined. Its treatment has evolved from enucleation to ocular radiotherapy, systemic chemotherapy and intravitreal chemotherapy. Radiotherapy can effectively eradicate tumor cells but ocular recurrences are common. Systemic chemotherapy has become the mainstream option but there are problems with only-partial response of PVRL and high rate of recurrence. Intravitreal chemotherapy, primarily used as adjunctive to systemic chemotherapy, has achieved high remission rate and low rate of recurrence as well as with limited ocular complications. The tumor cells were cleared and the visual function preserved. However, issues about the drug applied, treatment protocols and goals of intravitreal chemotherapy, whether for visual preservation or survival improvement, are worthy for further study.
ObjectiveTo observe the efficacy of dexamethasone intravitreal implant (DEX) combined with pars plana vitrectomy (PPV) in eyes with severe idiopathic epimacular membrane (IMEM). MethodsA prospective clinical case study. From December 2018 to May 2021, 24 patients with 25 eyes of severe IMEM diagnosed in Tianjin Medical University Eye Hospital were included in the study. Among them, 7 males had 7 eyes, 17 females had 18 eyes. Age was 57 to 84 years old. The IMEM stage was 3 to 4 examined by spectral domain optical coherence tomography (SD-OCT). All eyes were performed best corrected visual acuity (BCVA) and central macular thickness (CMT) by SD-OCT. The patients were randomly divided into PPV group (11 eyes) and PPV+DEX group (14 eyes). Standard PPV by three-channel 25G was performed. Phacoemulsification, membrane stripping and intraocular lens implantation were combined during the operation. Patients received vitreous injection of 0.7 mg DEX in PPV+DEX group at the end of the operation. At 1 week, 1 month, 3 months and 6 months after operation, the same equipments and methods were used to perform relevant examinations. The changes of BCVA and CMT were compared between the two groups by t test. ResultsCompared with before operation, at 1, 3 and 6 months after operation, the BCVA of the eyes in the PPV+DEX group was significantly improved (t=3.974, 4.639, 4.453), CMT was significantly decreased (t=2.955, 3.722, 4.364), the differences were statistically significant (P<0.05); at 3 and 6 months after surgery, the BCVA of the eyes in the PPV group was significantly improved (t=2.983, 4.436), CMT was significantly decreased (t=2.983, 3.461), the differences were statistically significant (P<0.05). ConclusionIn the treatment of severe IMEM, DEX can accelerate the early postoperative visual recovery and reduce CMT.
ObjectiveTo observe the efficacy of parsplana vitrectomy (PPV) combined with 0.7 mg dexamethasone sustained-release Ozurdex intravitreal implantation in the treatment of children with ocular toxocariasis (OT). MethodsA retrospective clinical study. Fifty-three pediatric patients (53 eyes) diagnosed with OT and underwent PPV in Beijing Tongren Eye Center of Beijing Tongren hospital from March 2015 to December 2021 were included. There were 30 males and 23 females, with an average age of 7.07±3.45 (4-14) years; all were unilateral. Color Doppler imaging, fundus color photography, optical coherence tomography examinations were performed for patients who can cooperated with the examiners. Forty-three eyes were examined by best corrected visual acuity (BCVA); 47 eyes were examined by intraocular pressure; 29 eyes were examined by ultrasound biomicroscopy. According to the location of granuloma, OT was divided into posterior pole granulomatous type (posterior type), peripheral granulomatous type (peripheral type), and chronic endophthalmitis type. According to whether Ozurdex was implanted into the vitreous cavity after PPV, the children were divided into the oral glucocorticoid group after PPV (group A) and the PPV combined with vitreous cavity implantation of Ozurdex group (group B), 37 cases with 37 eyes and 16 cases with 16 eyes, respectively. There was no significant difference in age (t=0.432), sex composition ratio (χ2=0.117), BCVA (χ2=0.239), and clinical type (χ2=0.312) between the two groups (P>0.05). The follow-up time after surgery was ≥5 months. The intraocular pressure at 1 week and 1, 3, and 6 months after surgery, the changes of BCVA and the occurrence of complications such as concurrent cataract and epimacular membrane were observed at the last follow-up, and the incidence of obesity in the children during the follow-up period was recorded. The measurement data between groups was compared by independent sample t test; the enumeration data was compared by χ2 test. ResultsOne month after the operation, the intraocular pressure of group A and group B were 15.17±6.21 and 25.28±10.38 mm Hg (1 mm Hg=0.133 kPa) respectively; the intraocular pressure of group B was significantly higher than that of group A, the difference was statistically significant (t=0.141, P=0.043). At the last follow-up, there was no significant difference in the percentage of visual acuity improvement between the two groups (χ2=0.315, P=0.053); there was no significant difference in the incidence of concurrent cataract and epimacular membrane (χ2=0.621, P>0.05). Among the 37 cases in group A, 32 cases (86.5%, 32/37) developed obesity symptoms during the follow-up period. ConclusionPPV combined with intravitreal implantation of Ozurdex and oral glucocorticoid after PPV can effectively improve the visual acuity of the affected eye; the incidence of complications is similar, however, the incidence of obesity after oral glucocorticoid is higher.
ObjectiveTo evaluate the safety and efficacy of the intravitreal methotrexate treatment in patients with primary vitreoretinal lymphoma (PVRL). MethodsRetrospective non-comparative interventional case series. Fourteen patients (26 eyes) with biopsy-proven PVRL were included in the study. All patients received examination of Snellen chart visual acuity, fundus color photography and optical coherence tomography (OCT). Among the 24 eyes with recordable visual acuity, 17 eyes has initial visual acuity≥0.1 (0.45±0.20) and 7 eyes with initial visual acuity ranged from light perception to hand movement. The vitreous opacities and (or) subretinal yellowish-white lesions and retinal pigment epitheliumuplift were observed in all eyes. All eyes were treated with intravitreal methotrexate (4000 μg/ml, 0.1 ml) injections according to a induction-consolidation-maintenance regimen. For 26 treated eyes, each received an average of (11.5±6.3) injections. Twenty eyes had finished theintraocular chemotherapy, while 6 eyes had not. Eight of 20 eyes were clinically confirmed free of tumor cells by diagnostic vitrectomy, 12 eyes were still with tumor cell involvement.The follow-up was ranged from 2 to 48 months, the mean time was 18 months. The examination of BCVA, fundus color photography and OCT were performed. No tumor cell was defined as clinical remission. Visual acuity was scored as improved or declined obviously (improved or declined 2 lines) or mild improved or declined (changed within 2 lines). ResultsTwenty eyes achieved clinical remission after (3.5±3.6) injections, 12 eyes of 20 eyes with tumor cell involvement before chemotherapy achieved clinical remission after (5.8±3.0) injections. The mean visual acuity of seventeen eyes with initial visual acuity 0.1 in induction phase and at the end of treatment were 0.36±0.23 and 0.56±0.20, respectively. Compared with before treatment, the visual acuity was mild declined in induction phase (t=1.541, P>0.05), but mild improved at the end of treatment (t=2.639, P<0.05). The visual acuity at the end of treatment in 7 eyes with initial visual acuity<0.1 was ranged from no light perception to 0.1. Of 14 patients, 2 patients have been fatal because of brain lesions progression at 42 and 48 months after diagnosis of primary central nervous system lymphoma. No ocular recurrence was noted during the follow-up in 20 eyes who finished intraocular chemotherapy. ConclusionsPVRL patients can achieve clinical remission after (3.5±3.6) injections by intravitreal chemotherapy of methotrexate, and the visual acuity improved mildly. No ocular recurrence was found during follow-up.
Diabetic macular edema (DME) is the most threatening complication of diabetic retinopathy that affects visual function, which is characterized by intractability and recurrent attacks. Currently, the clinical routine treatments for DME mainly include intravitreal injection, grid laser photocoagulation in the macular area, subthreshold micropulse laser, periocular corticosteroid injection, and vitrectomy. Although conventional treatments are effective for some patients, persistent, refractory, and recurrent DME remains a clinical challenge that needs to be urgently addressed. In recent years, clinical studies have found that certain combination therapies are superior to monotherapy, which can not only restore the anatomical structure of the macular area and effectively reduce macular edema but also improve visual function to some extent while reducing the number of treatments and the overall cost. This makes up for the shortcomings of single treatment modalities and is highly anticipated in the clinical setting. However, the application of combination therapy in clinical practice is relatively short, and its safety and long-term effectiveness need further exploration. Currently, new drugs, new formulations, and new therapeutic targets are still under research and development to address different mechanisms of DME occurrence and development, such as anti-vascular endothelial growth factor agents designed to anchor repetitive sequence proteins with stronger inhibition of vascular leakage, multiple growth factor inhibitors, anti-inflammatory agents, and stem cell therapy. With the continuous improvement of the combination application of existing drugs and treatments and the development of new drugs and treatment technologies, personalized treatment for DME will become possible.
Intravitreal drug injection is a treatment for common chronic fundus diseases such as age-related macular degeneration and diabetic retinopathy. The “14th Five-Year” National Eye Health Plan (2021-2025) recommends focusing on fundus diseases and improve the management mode of patients with chronic eye diseases. Therefore, it is imperative to explore how to further optimize the service process of intravitreal injection under the premise of guaranteeing patients' medical safety, to promote medical service efficiency and standardized management level and improve the medical experience of patients. Based on the quality control standard of vitreous cavity injection for retinopathy in China, Chinese fundus disease and related field experts developed the present expert consensus on the establishment of a one-stop intravitreal injection model and the management of its organization after a serious, comprehensive, and complete discussion, focusing on a standardized operation process, quality control, and safety management, providing more references for establishing a suitable intravitreal injection management model for ophthalmology and promoting the development of diagnostic and treatment models for fundus disease in China.
ObjectiveTo evaluate the efficacy of intravitreal injection (IVI) of expansile gas alone to treat idiopathic full-thickness macular hole (FTMH).MethodsThis is a prospective interventional case series. Twenty FTMH patients (26 eyes) who underwent IVI with expansile gas alone were enrolled in this study. There were 5 males (5 eyes) and 21 females (21 eyes), with the mean age of (59±12) years. All patients received the best corrected visual acuity (BCVA), slit lamp microscope, indirect ophthalmoscopy, fundus color photography and three-dimensional optical coherence tomography (OCT) examinations. The BCVA was measured using the international standard visual acuity chart, and the results were converted to the logarithm of the minimum angle of resolution visual acuity. The diameters of macular holes and the interface between vitreous and macular were observed by OCT (Topcon, OCT-2000). Based on the diameter, the holes were classified as small FTMH (equal or lesser than 250 μm), medium FTMH (more than 250 μm but equal or lesser than 400 μm) and large FTMH (more than 400 μm). The mean BCVA was 0.85±0.29. There were 7, 10 and 9 eyes with small, medium and large FTMH. There were 10 eyes with vitreous- macular traction (VMT). All the eyes received IVI of 0.2 ml C3F8 followed facedown positioning for 7-14 days. The follow-up ranged from 1 to 23 months. The BCVA, FTMH closure and complications were observed. If holes failed to close at 1 month after IVI, vitrectomy combined with internal limiting membrane (ILM) peeling and C3F8 tamponade would be performed for these eyes.ResultsFTMHs was able to close in 17/26 eyes (65.4%) had hole closure, failed to close in 9 /26 eyes (34.6%). All 10 eyes with VMT achieved vitreous-macula separation after IVI of gas. The eyes failed in the closure initially with IVI of gas alone, all succeed with hole closure after vitrectomy combined with ILM peeling and C3F8 tamponade. The closure rate of small (6 eyes), medium (8 eyes) and large FTMH (3 eyes) was 85.7%, 80.0% and 33.3% respectively. The diameter of FTMHs in holes-closure eyes and failed-closure eyes was (307.8±122.8), (431.6±128.4) μm respectively, the difference was significant (t=?2.407, P=0.024). VMT was found in 6 eyes and 4 eyes in holes-closure group and failed-closure group, respectively, the difference was significant (t=?2.196, P=0.038). The mean preoperative BCVA was 0.51±0.36. There was a significant difference between pre-and postoperative BCVA (t=4.758, P<0.05). Two eyes developed local retinal detachment, which achieved hole closure and retinal reattachment after vitrectomy.ConclusionIVI of expansile gas alone is an effective way in treating FTMH with a diameter smaller than 400 μm and with VMT before surgery.
ObjectiveTo compare and analyze the application of anti-vascular endothelial growth factor (VEGF) drugs for intravitreal injection in the real world before and after the establishment of one-stop intravitreal injection center, as well as the advantages and disadvantages of different management modes. MethodsA retrospective clinical study. A total of 4 015 patients (4 659 eyes) who received anti-VEGF drugs for ocular fundus diseases at the Tianjin Medical University Eye Hospital from July, 2018 to June, 2022 were included in the study. There were 2 146 males and 1 869 females. The ocular fundus diseases in this study were as follows: 1 090 eyes of 968 patients with wet age-related macular degeneration (wAMD); 855 eyes of 654 patients with diabetic macular edema (DME); 1 158 eyes of 980 patients with diabetic retinopathy (DR); 930 eyes of 916 patients with macular edema secondary to retinal vein occlusion (RVO-ME). A total of 294 eyes of 275 patients with choroidal neovascularization secondary to pathological myopia (PM-CNV); 332 eyes of 222 patients with other fundus diseases. A total of 13 796 anti-VEGF needles were injected. A total of 1 252 patients (1 403 eyes) from July 2018 to June 2020 were regarded as the control group. From July 2020 to June 2022, 2 763 patients (3 256 eyes) who received anti-VEGF treatment in the intravitreal injection center were regarded as the observation group. The total number of intravitreal injection needles, the distribution of anti-VEGF therapy in each disease according to disease classification, the proportion of patients who chose the 3+ on-demand treatment (PRN) regimen and the distribution of clinical application of different anti-VEGF drugs were compared between the control group and the observation group. The waiting time and medical experience of patients were investigated by questionnaire. χ2 test was used to compare the count data between the two groups, and t test was used to compare the measurement data. ResultsAmong the 13 796 anti-VEGF injections in 4 659 eyes, the total number of anti-VEGF drugs used in the control and observation groups were 4 762 and 9 034, respectively, with an average of (3.39±3.78) and (2.78±2.27) injections per eye (t=6.900, P<0.001), respectively. In the control and observation groups, a total of 1 728 and 2 705 injections of anti-VEGF drugs were used for wAMD with an average of (5.14±4.56) and (3.59±2.45) injections per eye, respectively; a total of 982 and 2 038 injections of anti-VEGF drugs were used for DME with an average of (4.36±4.91) and (3.24±2.77) needles per eye, respectively. Additionally, a total of 942 and 2 179 injections of anti-VEGF drugs were injected for RVO-ME with an average of (3.98±3.71) and (3.14±2.15) injections per eye, respectively; a total of 291 and 615 injections of anti-VEGF drugs were injected for PM-CNV with an average of (3.31±2.63) and (2.99±1.69) injections per eye, respectively. A total of 683 and 1 029 injections of anti-VEGF drugs were injected for DR with an average of (1.60±1.26) and (1.41±1.05) injections per eye, respectively. The clinical application and implementation of "3+PRN" treatment were as follows: 223 (66.4%, 223/336) and 431 eyes (57.2%, 431/754) in the wAMD (χ2=8.210, P=0.004), 75 (33.3%, 75/225) and 236 (37.5%, 236/630) eyes in the DME (χ2=1.220, P>0.05), and 97 (40.9%, 97/237) and 355 eyes (51.2%, 355/693) in the RVO-ME (χ2=7.498, P=0.006), 39 (44.3%, 39/88) and 111 eyes (53.9%, 111/206) in the PM-CNV ( χ2=2.258, P>0.05), respectively. In addition, the results of the questionnaire survey showed that there were significant differences between the control and observation groups regarding the time of appointment waiting for surgery (t=1.340), time from admission to entering the operating room on the day of injection (t=2.780), time from completing preoperative treatment preparation to waiting for entering the operating room (t=8.390), and time from admission to discharge (t=6.060) (P<0.05). ConclusionsThe establishment of a one-stop intravitreal injection mode greatly improved work efficiency and increased the number of injections. At the same time, the compliance, waiting time, and overall medical experience of patients significantly improved under centralized management.
Corticosteroids, anti-vascular endothelial growth factor, antibiotics and antiviral were the main 4 classes of drugs for intravitreal injection. Depending on the class and volume of medication, age and gender of patients, ocular axial lengths or vitreous humour reflux, intraocular pressure (IOP) can be elevated transiently or persistently after intravitreal injection. Transient IOP elevation occurred in 2 weeks after intravitreal injection, and can be reduced to normal level for most patients. Only a small portion of such patients have very high IOP and need intervention measures such as anterior chamber puncture or lowering intraocular pressure by drugs. Long term IOP elevation is refers to persistent IOP increase after 2 weeks after intravitreal injection, and cause optic nerve irreversible damage and decline in the visual function of patients. Thus drug or surgical intervention need to be considered for those patients with high and long period of elevated IOP. Large-scale multicenter clinical trials need to be performed to evaluate the roles of the drug and patients factors for IOP of post-intravitreal injection, and to determine if it is necessary and how to use methods reducing IOP before intravitreal injection.