Objective To study the vascularization of the compositeof bio-derived bone and marrow stromal stem cells(MSCs) in repairing goat tibial shaft defect.Methods Bio-derived bone was processed as scaffold material. MSCs were harvested and cultured in vitro. The multiplied and induced cells were seeded onto the scaffold to construct tissue engineered bone. A 20 mm segmental bone defect inlength was made in the middle of the tibia shaft in 20 mature goats and fixed with plate. The right tibia defect was repaired by tissue engineered bone (experimental side), and the left one was repaired by scaffold material (control side).The vascularization and osteogenesis of the implants were evaluated by transparent thick slide, image analysis of the vessels, and histology with Chinese ink perfusion 2, 4, 6, and 8 weeks after operation.Results More new vessels were found in control side than in experimental side 2 and 4 weeks after implantation (Plt;0.05). After 8 weeks, there was no significant difference in number of vessels between two sides(Pgt;0.05), and the implants were vascularized completely. New bone tissue was formed gradually as the time and the scaffold material degraded quickly after 6 and 8 weeks in the experimental side. However, no new bone tissue was formed andthe scaffold degraded slowly in control side 8 weeks after operation.Conclusion Bio-derived bone has good quality of vascularization. The ability of tissue-engineered bone to repair bone defect is better than that of bio-derived bone alone.
Objective To explore the osteogenic potential of cervical intervertebral disc fibroblasts in vitro, to investigate the regulatory factors of recombinant human bone morphogenetic protein 2(rhBMP-2) and tumor necrosis factor α(TNF-α) on osteogenic phenotype of fibroblasts and to discuss the condition that facilitates osteogenesis of fibroblasts. Methods Theannulus fibroblasts cell lines of experiment goats were established in vitro and the biologicspecificity was found. According to different medias, 4 groups were included in this experiment: control group, TNF-α group ( 50 U/ml TNF-α), rhBMP-2 group (0.1 μg/ml rhBMP-2) and TNF-α+rhBMP-2 group (50 U/ml TNF-α+0.1 μg/ml rhBMP-2). Thefibroblasts were incubated in the media for about 3 weeks,and then the markers for osteogenic features were investigated by biochemistry, histochemistry observations. Results rhBMP-2 and TNF-α had no effect on the proliferation of fibroblasts from the experiment goats. rhBMP-2 or TNF-α could stimulate fibroblasts to secrete alkaline phosphatase and collagen type Ⅰ. The combined use of rhBMP-2 and TNF-α or the single use of rhBMP-2 could make fibroblasts to secrete osteocalin and the morphological changes of the fibroblasts were very obvious. Histochemical study of the nodules with specific new bone labeler(Alizarin red S) revealed positive reaction, denoting that the nodules produced by the fibroblasts werebone tissues. There was statistically significant difference(Plt;0.05) inALP activity between 3 experimental groups and control group and in secretion of osteocalcin between rhBMP-2 group, TNF-α+rhBMP-2 group and control group. Conclusion The results point out clearly that rhBMP-2 can induce theosteogenic potential of annulus fibroblasts in vitro.
Objective To further investigate the possible mechanism of the correction of scol iosis with Staple by quantifying the effect of Staple on growth rate of vertebral growth plates in goat scol iosis. Methods Experimental scol iosis was created in 10 juvenile female goats by using unilateral pedicle screws asymmetric tethering. After 8-10 weeks, goats were divided randomly into Staple treated group (n=5) and control group (n=5). All tethers were removed in both groups and Staplegroup underwent anterior vertebral stapl ing with 4-5 shape memory alloy Staples along the convexity of the maximal curvature after posterior tether being removed. All goats were observed for an additional 8-13 weeks, the Cobb angle were measured to observe the correction of scol iosis. The fluorochromes Oxytetracycl ine and Calcein were administered respectively 18 and 3 days before death to label the ossifying front under the growth plates. Superior intervertebral disc of apical vertebra and two adjacent growth plates were completely harvested in all goats. All specimens were embedded with polymethyl methacrylate and sl iced undecalcified. The growth rates of the vertebral growth plates were calculated by measuring the distance between the two fluorescent l ines with fluorescence microscope. Results Nine (5 in Staple treated group and 4 in control group) of 10 tethered goats had progressive scol iotic curves of significant magnitude after 8-10 weeks of tethering. In Staple treated group, the Cobb angles were (34.8 ± 12.4)° at the instant after treatment , and (15.6 ± 11.7)° 8-13 weeks after treatment; showing statistically significant difference (P lt; 0.05). In the control group, the Cobb angles were (49.3 ± 18.0)° at the instant after treatment, and(49.0 ± 17.6)° 8-13 weeks after treatment; showing no statistically significant difference (P gt; 0.05). In Staple treated group, the growth rate of growth plate in the concavity (3.27 ± 0.96) μm/d was higher than that in convexity (1.84 ± 0.52) μm/d (P lt; 0.05), while the growth rate of the concavity did not differ significantly from that of the convexity in control group (P gt; 0.05). Conclusion Staple can significantly alter the growth rates of two sides of vertebrae in scol iosis with the growth rate of concavity exceeding the one of convexity, which results in correction of deformity.
Objective To investigate the ability to repair goat tibia defect with marrow stromal stem cells (MSCs) and bio-derived bone, and the feasibility of the compounds as bone substitute material. Methods MSCs were cultured with the bioderived bone in vitro, and the 20 mm tibia defect of goat was made and fixedwith plate. Eighteen goats were divided into experimental group, control group and blankgroup. The defects were not filled with anything in blank group, with tissue engineering bone in experimental group and bio-derived bone in control group. Therepair capability was assessed by physical, X-ray and bone mineral density examinations8,12,16, and 24 weeks after operation. Results In experimental group, the defects were partially repaired 8 weeks, and completely repaired12 and 16 weeks; there was significant difference in bone density between experimental group and control group (P<0.05) 8,12 and 16 weeks, but no significant difference 24 weeks. The defects of blank group were not repaired 24weeks. Conclusion The tissue engineering bone can efficiently repair bone defect, and its repair capability is better than that of bio-derived bone alone both in quantity and quality of boneformation.
Objective To establish a rapid, simple, and economic method to prepare osteoporosis (OP) in vitro model. Methods Eighty pairs of fresh goat femur were collected from 18-month-old female goats and were randomly divided into 4 groups (20 pairs in each group). The femur was immersed decalcifying solution (18% EDTA) for 1-5 days (group B), 6-10 days (group C), and 11-15 days (group D), while group A had no treatment as control. Four pairs of femur were taken out every day. Quantitative computed tomography was used to scan the medial and lateral femoral condyles, and the bone mineral density (BMD) was calculated. Electronic universal testing machine was used to do three-point bending test and compress and tensile ultimate strenght test, and the mechanical parameters for femur were calculated. Results With demineralized time passing, BMD of the medial and lateral femoral condyles were downtrend in groups A, B, C, and D, showing significant differences among 4 groups (P lt; 0.05); BMD of the lateral femoral condyle was significantly higher than that of the medial femoral condyle in each group (P lt; 0.05). The three-point bending test showed that broken load, ultimate strength, and elastic modulus of groups A and B were significantly higher than those of groups C and D (P lt; 0.05); but no significant difference was found between groups A and B, and between groups C and D (P gt; 0.05). Compress and tensile ultimate strength test showed that the compress and tensile ultimate strengths were significantly higher in group A than in groups C and D (P lt; 0.05), and in group B than in group D (P lt; 0.05), but no significant difference was found between groups A and B, between groups B and C, and between groups C and D (P gt; 0.05). Conclusion The 18% EDTA immersing for 6-15 days is a fast, simple, economical method to prepare an OP in vitro model of goat femur.
Objective To compare the effect of mosaicplasty, mosaicplasty with gene enhanced tissue engineering and mosaicplasty with the gels of non-gene transduced BMSCs in alginate on the treatment of acute osteochondral defects. Methods Western blot test was conducted to detect the expression of hTGF-β1, Col II and Aggrecan in 3 groups, namely hTGF-β1 transduction group, Adv-βgal transduction group and blank control group without transduction. Eighteen 6-month-old Shanghai mascul ine goats weighing 22-25 kg were randomized into groups A, B and C (n=6). BMSCs were isolatedfrom the autologous bone marrow of groups B and C, and were subcultured to get the cells at passage 3. In group B, the BMSCs were transduced with hTGF-β1. For the animals of 3 groups, acute cyl indrical defects 5 mm in diameter and 3 mm in depth were created in the weight bearing area of the medial femoral condyle of hind l imbs. In group A, the autologous osteochondral mosaicplasty was performed to repair the defect; in group B, besides the mosaicplasty, the dead space between the cyl indrical grafts and the host cartilage were injected with the suspension of hTGF-β1 gene transduced autogenous BMSCs in sodium alginate, and CaCl2 was dropped into it to form calcium alginate gels; in group C, the method was the same as the group B, but the BMSCs were not transduced. General condition of the goats after operation was observed, the goats were killed 12 and 24 weeks after operation to receive gross and histology observation, which was evaluated by the histological grading scale of O’Driscoll, Keeley and Salter. Immunohistochemistry and TEM observation were performed 24 weeks after operation. Results Western blot test showed the expression of the hTGF-β1, Col II and the Aggrecan in the hTGF-β1 transduction group were significantly higher than that of the Adv-βgal transduction and the blank control groups. All the goats survived until the end of experiment and all the wounds healed by first intention. Gross observation revealed the boundaries of the reparative tissue in group B were indistinct, with smooth and continuous surfaces of the whole repaired area; while there were gaps in the cartilage spaces of groups A and C. Histology observation showed the dead space between the cyl indrical grafts in group A had fibrocartilage-l ike repair tissue, fill ing of fibrous tissue or overgrowth of the adjacent cartilage; the chondrocytes in group B had regular arrangements, with favorable integrations; while the dead space between the cyl indrical grafts in group C had fibrocartilage-l ike repair tissue, with the existence of gaps. The histology scores of group B at different time points were significantly higher than that of groups A and C, and group C was better than group A (P lt; 0.05); for group B, significant difference was detected between 12 weeks and 24 weeks in the histology score (P lt; 0.05). Immunohistochemistry staining for Col II 24 weeks after operation showed the chondrocytes and lacuna of the reparative tissue in group B was obviously stained, while groups A and C presented l ight staining. TEM observation showed there were typical chondrocytes in the reparative tissue in group B, while parallel or interlaced arrangement collagen fiber existed in groups A and C. Conclusion Combining mosaicplasty with tissue engineering methods can solve theproblem caused by single use of mosaicplasty, including the poor concrescence of the remnant defect and poor integration with host cartilages.
Objective To investigate the effect of hydrostatic pressure and insulin-like growth factor 1 (IGF-1) on the expression of filamentous actin (F-actin) of temporomandibular joint disc cells in goats, and to analyze the F-actin changes of temporomandibular joint disc cells in vitro under hydrostatic pressure and IGF-1 stimulation. Methods The bilateral temporomandibular joint discs were harvested from 4 1-month-old goats, and temporomandibular joint disc cells were isolated with collagenase. Immunohistochemical staining for collagen type I and collagen type II was performed for identification. The cells at passages 2-3 were used; the experiment was divided into 4 groups according to different interventions: the cells were cultivated with complete medium in group A as control; the cells were intervened by hydrostatic pressure (0.2 MPa and 1 Hz for 3 hours) in group B, by complete medium containing IGF-1 (10 ng/mL) in group C, and by a combination of hydrostatic pressure (0.2 MPa and 1 Hz for 3 hours) and complete medium containing IGF-1 (10 ng/mL) in group D. The changes of F-actin at 24 and 72 hours after cultivation were observed by immunofluorescence staining. The cell fluorescence intensity was measured. Results The cultivated cells were identified to be temporomandibular joint disc cells by morphological observation and immunohistochemical staining. At 24 hours, fluorescence intensity of groups A and C was b and clear, with normal morphology of temporomandibular joint disc cells; F-actin arranged in disorder in group B, and F-actin was thinner with arrangement disorder in group D. At 72 hours, the F-actin arranged regularly in groups A and C; however, some F-actin became blurry with irregular arrangement, breakage, and pseudopodia in group B; and F-actin was thinner and ruptured formed in group D. With time passing, the fluorescence intensity of F-actin in groups A, B, and D had an increasing trend, showing significant differences between 24 hours and 72 hours (P lt; 0.05); but there was no significant difference between 24 and 72 hours in group C (t=0.284, P=0.781). At 24 hours, fluorescence intensity of F-actin was highest in group C and was lowest in group B, showing significant difference when compared with groups A and D (P lt; 0.05). At 72 hours, fluorescence intensity in groups B and D was significantly lower than that in groups A and C (P lt; 0.05), but there was no significant difference between groups B and D, and between groups A and C (P gt; 0.05). Conclusion Hydrostatic pressure may cause the F-actin breakage and rearrangement of temporomandibular joint disc cells, and IGF-1 can up-regulate the F-actin expression. Such effects may be correlated with the biological behavior of the temporomandibular joint disc cells.
Objective To investigate the effect of cleft palate on the development of the mid-part of the face so as to provide an optimum animal model for the fetal cleft repair. Methods Twenty female Boer hybrid goats were selected, aging from 8 to 12 months and weighing from 35 to 55 kg. The mating day was identified as 0 day of pregnancy. The goats werediagnosed with pregnancy by the B-ultrasound examination at 30 days, and were allocated into experimental group (n=14) and control group (n=6). In experimental group, uterine cavitory operation was performed at 65 days of pregnancy to form cleft palate which was a fissure between oral and nasal cavity; no treatment was given as the control group. At 120 days of pregnancy, and after 1 month and 3 months of birth, the gross observation and 3-dimensional skull CT reconstruction were performed; and the maxillary bone width named as PPMM and the maxillary bone length named as APMM were measured. Results After operation, 2 goats died of infection, miscarriage occurred in 3 goats; 9 goats were included into the experiment. The operation success rate was 64.3%. In experimental group, maxillary dysplasia occurred in all the fetal goats at 120 days of pregnancy, and more obvious maxillary dysplasia was observed at 1 month and 3 months after birth; no maxillary dysplasia occurred in control group. There were significant differences in PPMM and APMM between 2 groups at different time points (P lt; 0.05). In experimental group, the lambs had poor chewing function, and died of pulmonary infection after aspiration at 1-4 months after birth. Conclusion The surgical procedure for partial ablation of secondary primitive palate in the midl ine could make the model of cleft palate.
Objective To discuss the stabil ity and practical ity of temporomandibular joint replacement by establ ishing goats artificial temporomandibular joint replacement model. Methods Six healthy mature goats were selected, the male and female being half and weighing 35.3-37.0 kg. According to the parameters from X-ray films of goat’ s temporomandibular joint and the shape of the same kind goat’s skull, the total temporomandibular joint prosthesis was prepared. The one side temporomandibular joints of six goats were replaced by prosthesis randomly as the experimental group (n=6, fossa and condyle according to replacement location) and the other side by titanium plate as the control group (n=6). At 4,8, and 12 weeks, the histological observation, scanning electron microscope (SEM) observation were carried out for observing structural changes in the interface. The mechanical test and histochemistry test were used for observing the combination degree of interface and the alkal ine phosphatase (ALP) activity. Results All animals were al ive to the end of experiment with normal open mouth, good recovery of masticatory function, and normal eating. At 4, 8, and 12 weeks, implants were stable in 2 groups without loosening. The histological observation and SEM observation showed the amount of osteoblasts in interface increased over times. There were significant differences in the shearing force and the ALP activity between fossa in experimental group and control group at 4 weeks (P lt; 0.05), but there was no significant difference between other groups (P gt; 0.05). Conclusion The total temporomandibular prosthesis has good stabil ity in temporomandibular joint reconstruction of goat after replacement.
Objective To evaluate the application of artificial lamina of multi-amino-acid copolymer (MAACP)/nano-hydroxyapatite (n-HA) in prevention of epidural adhesion and compression of scar tissue after posterior cervical laminectomy. Methods Fifteen 2-year-old male goats [weighing, (30 ± 2) kg] were randomly divided into experimental group (n=9) and control group (n=6). In the experimental group, C4 laminectomy was performed, followed by MAACP/n-HA artificial lamina implantations; in the control group, only C4 laminectomy was performed. At 4, 12, and 24 weeks after operation, 2, 2, and 5 goats in the experimental group and 2, 2, and 2 goats in the control group were selected for observation of wound infection, artificial laminar fragmentation and displacement, and its shape; Rydell’s degree of adhesion criteria was used to evaluate the adhesion degree between 2 groups. X-ray and CT images were observed; at 24 weeks after operation, CT scan was used to measure the spinal canal area and the sagittal diameter of C3, C4, and C5 vertebrea, 2 normal goats served as normal group; and MRI was used to assess adhesion and compression of scar tissue on the dura and the nerve root. Then goats were sacrificed and histological observation was carried out. Results After operation, the wound healed well; no toxicity or elimination reaction was observed. According to Rydell’s degree of adhesion criteria, adhesion in the experimental group was significantly slighter than that in the control group (Z= — 2.52, P=0.00). X-ray and CT scan showed that no dislocation of artificial lamina occurred, new cervical bone formed in the defect, and bony spinal canal was rebuilt in the experimental group. Defects of C4 vertebral plate and spinous process were observed in the control group. At 24 weeks, the spinal canal area and sagittal diameter of C4 in the experimental group and normal group were significantly larger than those in the control group (P lt; 0.05), but no significant difference was found between experimental group and normal group (P gt; 0.05). MRI showed cerebrospinal fluid signal was unobstructed and no soft tissue projected into the spinal canal in the experimental group; scar tissue projected into the spinal canal and the dura were compressed by scar tissue in the control group. HE staining and Masson trichrome staining showed that artificial lamina had no obvious degradation with high integrity, some new bone formed at interface between the artificial material and bone in the experimental group; fibrous tissue grew into defect in the control group. Conclusion The MAACP/n-HA artificial lamina could maintaine good biomechanical properties for a long time in vivo and could effectively prevent the epidural scar from growing in the lamina defect area.