• <table id="gigg0"></table>
  • west china medical publishers
    Keyword
    • Title
    • Author
    • Keyword
    • Abstract
    Advance search
    Advance search

    Search

    find Keyword "Computer-assisted" 17 results
    • MODIFIED ROBOTIZED HYDRAULIC TENSOR FOR LIGAMENT BALANCE IN TOTAL KNEE ARTHROPLASTY

      Objective To investigate a modified robotized hydraulictensor for management of the ligament balance in the total knee arthroplasty. Methods The effect of the modified robotized hydraulic tensor on the mechanical behaviour of the ligament system balance in the total knee arthroplasty was analyzed andthe related information was obtained. Results The robotized hydraulic tensor acted as a tensorsensor system, which could assist the surgeon by providing thequantitative information to align the lower limb in extension, equalize the articular spaces in extension and flexion, balance the internal and external forces, and define the femoral component rotation, and by providing the information toplan the releasing of the soft tissues and the rotating of the femoral component. Conclusion The modified robotized hydraulic tensor can enable the surgeon to properly manage the ligament balance in the total knee arthroplasty.

      Release date:2016-09-01 09:20 Export PDF Favorites Scan
    • Progress in telerehabilitation of post-stroke cognitive impairment

      Post-stroke cognitive dysfunction is a common complication of stroke, and active rehabilitation therapy can effectively promote the recovery of patients. As a new treatment method, telecognitive rehabilitation is used in rehabilitation treatment of cognitive disorders. Its main technologies include computer-assisted cognitive rehabilitation, virtual reality technology, and artificial intelligence technology. It can use the Internet platform to provide homogeneous treatment, make patients more convenient for cognitive rehabilitation treatment, help to ensure the continuity of rehabilitation treatment, and save medical costs. This article describes the definition of cognitive telerehabilitation, the development and application of cognitive telerehabilitation technology, and summarizes the existing problems. The purpose is to provide a reference for the clinical application of cognitive telerehabilitation in China and future research directions.

      Release date:2020-07-26 03:07 Export PDF Favorites Scan
    • MINIMALLY INVASIVE FIXATION UNDER COMPUTER-ASSISTED NAVIGATION FOR TREATMENT OF PERIACETABULAR FRACTURES, ANTERIOR AND POSTERIOR PELVIC RING FRACTURES

      ObjectiveTo investigate the application and technical essentials of computer-assisted navigation in the surgical management of periacetabular fractures and pelvic fractures. MethodsBetween May 2010 and May 2011, 39 patients with periacetabular or anterior and posterior pelvic ring fractures were treated by minimally invasive fixation under computer-assisted navigation and were followed up more than 2 years, and the clinical data were analyzed retrospectively. There were 21 males and 18 females, aged 15-64 years (mean, 36 years). Fractures were caused by traffic accident in 23 cases, crush injury in 6 cases, and falling from height in 10 cases. Of them, 6 cases had acetabular fractures; 6 cases had femoral neck fractures; 18 cases had dislocation of sacroiliac joint; and 15 cases had anterior pelvic ring injuries. All patients were treated with closed or limited open reduction and screw fixations assisted with navigation. ResultsEighty-nine screws were inserted during operation, including 8 in the acetabulum, 18 in the neck of the femur, 33 in the sacroiliac joint, and 30 in the symphysis pubis and pubic rami. The mean time of screw implanted was 20 minutes (range, 11-38 minutes), and the average blood loss volume was 20 mL (range, 10-50 mL). The postoperative pelvic X-ray and three dimensional CT scan showed good reduction of fractures and good position of the screws. No incision infection, neurovascular injury, or implant failure occurred. All patients were followed up 27-33 months with an average of 29.6 months. The patients could walk with full weight loading at 6-12 weeks after operation (mean, 8 weeks); at last follow-up, the patients could walk on the flat ground, stand with one leg, and squat down, and they recovered well enough to do their job and to live a normal life. ConclusionMinimally invasive fixation under computer-assisted navigation may be an excellent method to treat some specific types of periacetabular and anterior and posterior pelvic ring fractures because it has the advantages of less trauma and blood loss, lower complication incidence, and faster recovery.

      Release date: Export PDF Favorites Scan
    • FABRICATION OF CUSTOMMADE ARTIFICIAL SEMIKNEE JOINT BASED ON RAPID PROTOTYPING TECHNIQUE: THREEDIMENSIONAL RECONSTRUCTION OF FEMORAL CONDYLE

      Objective To achieve threedimensional (3D) contour image of boneand articular cartilage for fabricating custommade artificial semiknee joint as segment bone allograft.Methods The distal femora of human and pig were scanned with Picker 6000 spiral X-ray computed tomography with 1.0 mm thick slice. The data obtained were treated in Voxel Q image workstation for 3D reconstruction with volume rendering technique. After being downloaded to personal computer at 0.1 mm interval, the transaxial 2D image data were converted into 2D digitized contour data by using image processing software developed by the team. The 2D digitized data were inputted into image processing software of Surfacer 9.0 (Imageware Company, USA), then the 3D wire frame and solidimages of femoral condyle were reconstructed. Subsequently, based on the clinical experience and the requirement of the design of artificial knee joint, the 3Dcontour image of bone or articular cartilage was extracted from the surrounding.Results The 3D contour image of bone or articular cartilage presented was edited and processed easily for the computer aided design(CAD) of custom-madeartificial knee joint.Conclusion The 3D contour image of boneand articular cartilage can be obtained by spiral CT scanning, and the digitized data can beapplied directly to CAD of custom-made artificial joint and subsequently rapidprototyping fabricating. In addition, the reconstruction method is simple and can be applied widely to clinical implant fabricating practice of dentistry and orthopaedics. 

      Release date:2016-09-01 09:33 Export PDF Favorites Scan
    • BASIC CONCEPT IN COMPUTER ASSISTED SURGERY

      Objective To investigate application of medical digital imaging systems and computer technologies in orthpedics. Methods The main computer-assisted surgery systems comprise the four following subcategories. Results ①A collection and recording process for digital data on each patient, including preoperative images (CT scans, MRI, standard X-rays), intraoperative visualization (fluoroscopy, ultrasound), and intraoperative position and orientation of surgical instruments or bone sections (using 3D localisers). Data merging based on the matching of preoperative imaging (CT scans, MRI, standard X-rays) and intraoperative visualization (anatomical landmarks, or bone surfaces digitized intraoperatively via 3D localiser; intraoperative ultrasound images processed for delineationof bone contours). ②In cases where only intraoperative images are used for computer-assisted surgical navigation, the calibration of the intraoperative imaging system replaces the merged data system, which is then no longer necessary. ③A system that provides aid in decisionmaking, so that the surgical approach is planned on basis of multimodal information: the interactive positioning of surgical instruments or bone sections transmitted via pre- or intraoperative images, display of elements to guide surgicalnavigation (direction, axis, orientation, length and diameter of a surgical instrument, impingement, etc.). And ④ A system that monitors the surgical procedure, thereby ensuring that the optimal strategy defined at the preoperative stage is taken into account. Conclusion It is possible that computer-assisted orthopedic surgery systems will enable surgeons to better assess the accuracy and reliability of the various operative techniques, an indispensable stage in the optimization of surgery.

      Release date:2016-09-01 09:25 Export PDF Favorites Scan
    • CT Appearances of Mesenteric Tumors and the Differential Diagnosis

      Objective To review the CT appearances and important differential diagnoses of various primary and secondary mesenteric neoplasms. Methods By describing the mesenteric anatiomy and major routes for the dissemination of metastatic mesenteric tumors, the article presents both the common and rare types of various primary and secondary mesenteric neoplasms, and addresses the characteristic CT appearances and important aspects of the differential diagnosis. Results CT study, especially the multislice spiral CT (MSCT), along with the clinical history and other related information, can nicely depict various mesenteric tumors and well differentiate them from infectious, inflammatory or vascular processes affecting the mesentery. Conclusion CT is the imaging method of choice for the evaluation of tumors of small bowel mesentery.

      Release date:2016-08-28 04:43 Export PDF Favorites Scan
    • APPLICATION OF COMPUTER-ASSISTED TECHNOLOGY IN ANALYSIS OF REVISION REASON OF UNICOMPARTMENTAL KNEE ARTHROPLASTY

      ObjectiveTo conclude the revision reason of unicompartmental knee arthroplasty (UKA) using computer-assisted technology so as to provide reference for reducing the revision incidence and improving the level of surgical technique and rehabilitation. MethodThe relevant literature on analyzing revision reason of UKA using computer-assisted technology in recent years was extensively reviewed. ResultsThe revision reasons by computer-assisted technology are fracture of the medial tibial plateau, progressive osteoarthritis of reserved compartment, dislocation of mobile bearing, prosthesis loosening, polyethylene wear, and unexplained persistent pain. ConclusionsComputer-assisted technology can be used to analyze the revision reason of UKA and guide the best operating method and rehabilitation scheme by simulating the operative process and knee joint activities.

      Release date: Export PDF Favorites Scan
    • Clinical application of computer-assisted cannulated screw internal fixation system based on error correction method for femoral neck fractures

      Objective To investigate the clinical efficacy of computer-assisted cannulated screw internal fixation system based on error correction method for femoral neck fractures. Methods A retrospective analysis was made on the clinical data of 20 femoral neck fracture patients treated by computer-assisted cannulated screw internal fixation system based on error correction method between January 2014 and October 2015 (trial group), and 36 femoral neck fracture patients undergoing traditional manual surgery with closed reduction by cannulated screw fixation in the same period (the control group). There was no significant difference in gender, age, injury cause, side of fracture, types of fracture, and time from injury to operation between 2 groups (P>0.05). The operation time, intraoperative blood loss, intraoperative frequency of fluoroscopy and guide pin insertion, fracture healing time, fracture healing rate, and Harris hip score were compared between 2 groups. Results All incisions healed by first intention after operation, and no complication of blood vessel and nerve injury occurred. The operation time of trial group was significantly longer than that of control group (t=2.290,P=0.026), however, the intraoperative blood loss, intraoperative frequency of fluoroscopy and guide pin insertion of trial group were significantly less than those of control group (t=–10.650,P=0.000;t=18.320,P=0.000;t=–16.625,P=0.000). All patients were followed up 12-18 months (mean, 14.7 months). X-ray films showed that fracture healing was obtained in 2 groups, showing no significant difference in fracture healing time between 2 groups (t=0.208,P=0.836). No complication of ischemic necrosis of femoral head occurred during follow-up period. At last follow-up, the Harris hip score was 87.05±3.12 in trial group and was 86.78±2.83 in control group, showing no significant difference (t=0.333,P=0.741). Conclusion Computer-assisted cannulated screw internal fixation surgery based on error correction method for femoral neck fractures is better than traditional manual surgery in decreasing intraoperative radiation and surgical trauma during operation.

      Release date:2017-04-01 08:56 Export PDF Favorites Scan
    • FABRICATION OF CUSTOM-MADE ARTIFICIAL SEMIKNEE JOINT BASED ON RAPID PROTOTYPING TECHNIQUE:COMPUTER-ASSISTED DESIGN AND MANUFACTURING

      Objective To design a new custom-made artificial semi-knee joint based on rapid prototyping(RP) technique and to explore a method to solve necroses of allocartilage in hemi-joint allotransplantation. Methods Based on the extracted 3D contour image of the articular cartilage of femoral condyle, the custom-made artificial semi-knee joint was designed with Surfacer 9.0 image processingsoftware. The artificial semi-knee joint design used the femoral condylar 3D contour of the patient as the outer face and the subchondral bone 3D contour of allograft bone as inner face. One dado for medullary nailand two for special designing cages which were used to fix the cartilage into the allograft were added on the inner face. After being converted into RP data format, the computerassisted design was imported into the LPS600 rapid prototyping machine, and the prototype was achieved. Furthermore, the prototype could be modified by hand according to the design. Then the RP model was used as a positive mould to build up a silica gel negativemould, and the negative mould was sent to the factory to manufacture Ti-6Al-4V alloy articular cartilage through ordinary mould-melted founding process. Finally, the whole metal cartilage was completed after melting two special cages on it andpolishing it. Results A new custom-made artificial semi-knee joint was made ad used to treat a 14-year old patient. The custom-made artificial semi-knee joint and the subchondral bone were a perfect match. The operative result was satisfactory. The patient could walk 5 weeks after operation. The bone healing of the auto-bone and allo-bone was achieved 6 months later. A follow-up period lasting 1 yearshowed that the knee joint played a good function. Conclusion The artificial semi-knee joint is a good match for the allograft boneand a good idea to solve necroses of allocartilage in hemijoint allotransplantation. 

      Release date:2016-09-01 09:33 Export PDF Favorites Scan
    • BONE MORPHING SYSTEM FOR LIGAMENT BALANCEING IN TOTAL KNEE ARTHROPLASTY

      Objective To investigate effectiveness of applying the Bone Morphingbased image-free computer-assisted system for the ligament balancing managementin the total knee arthroplasty (TKA). Methods Between November 2002 and June 2003, twenty-one posterior stabilized total knee prostheses (Ceraver, France) were implanted in 21 patients using the Bone Morphing based image-free Ceravision system.This cohort included 5 men and 16 women with an average age of 72.4 years, two undergoing high tibial osteotomy and 1 undergoing distal femoral osteotomy before. The preoperative deviation was measured by the full-length AP X-rays. The knees were in varus deviation in 14 patients and in valgus deviation in 7 patients, with an average of 2.36°(varus 13°-valgus 13°). The frontal X-rays ofthe knee were assessed, the mean value of the varus force-stress test was 8.47°(varus 2°-varus 20°), and the mean value of the valgus forcestress test was 3.63°(varus 7°-valgus 12°). Results With the Ceravisionrecorded data, the intraoperative alignment was assessed, the mean lower limb axis was 3.33°(varus 12°-valgus 10°),and compared with the preoperative data, the difference was significant (Plt;0.05); the mean value of the varus force-stress test was 6.47°(varus 0°-varus 24°), the mean value of the valgus force-stress test was 4.32°(varus 8°- valgus 15°), and compared with the preoperative data, the difference was significant (Plt;0.05). The post-prosthetic alignment on Ceravision with a deviation of 0.175°(varus 2°- valgus 3°) was compared with the postoperative alignment by the full-length AP X-rays, with a deviation of 0.3°(varus 3.5°-valgus 1.5°), the difference wasn’t significant(Pgt;0.05).The clinical check-up performed 3 months after operation showed that the average range of movement (ROM) was 115°(105-130°), the mean frontal laxity was 0.27 mm(0.2-0.5 mm). The femoral and tibial components were implanted in the satisfactory 3 dimensional position without ligament imbalance in all the patients, andthere were no instability or patella complications.Conclusion Utilization of the Bone Morphing based image-free computer-assisted system can achieve an accurate component 3 dimensional alignment, optimal bone resection, optimal control of surgical decision in releasing the soft tissues, rotating the femoral component to gain an extension/flexion rectangular gap, and managing theligament balancing so as to achieve a satisfactory initial clinical outcome. This system can be routinely used in the TKA.

      Release date:2016-09-01 09:26 Export PDF Favorites Scan
    2 pages Previous 1 2 Next

    Format

    Content

  • <table id="gigg0"></table>
  • 松坂南