Objective To investigate the reversal of the multidrug resistant gene mdr1 in vivo by antisense oligodeoxynucleotide (ASODN) on the basis of study in vitro. Methods The cultured drug-resistant human hepatocellular carcinoma cells were injected under the skin of axilla to establish the tumor model of nude mice. mdr1 ASODN accompanied by Lipofectamine were injected locally and ADM was injected intraperitoneally. Control 1 and control 2 were locally injected by Lipofectamine and normal saline separately, and ADM was also injected intraperitoneally. Results As time went on the tumor size increased and from the 5th day on alterations were marked, tumor size in different time phase showed marked difference to the prior time phase with significant difference (P<0.05). Tumor size in group ASODN was marked smaller than that of other 3 groups after the 5th day (P<0.05),while tumor size of group control 1,2 and group SODN in different phase showed no significant difference (Pgt;0.05). The results suggested that SODN and Lipofectamine showed no marked effect on tumor growth of nude mice and ASODN had marked inhibition effect on tumor growth. Conclusion mdr1 ASODN can also reverse multidrug resistance of drug-resistant human hepatocellular carcinoma cells in vivo. After the treatment the tumor’s growth in nude mice will slow down in a range of time.
Objective To investigate the inhibitory effect of proliferation cell nuclear antigen (PCNA) antisense oligonucleotides mediated by liposome transfection on hepatocellular carcinoma cell proliferation. MethodsThe antisense oligonucleotides were complementary to 18mer sequences next to the start codon of PCNA mRNA sequences. The human hepatocellular carcinoma cell line Bel7404 was treated with antisense oligonucleotides. The inhibition of proliferation was estimated by MTT method. We compared the deference between the liposome mediated transfection technique and direct transfection technique. ResultsThe cell proliferation was inhibited effectively by antisense oligonucleotides. A sense sequence oligomer showed no effect.Liposome mediated transfection could enhance the inhibitory effect. Conclusion Liposome mediated transfection could enhance the inhibitory effect of PCNA antisense oligonucleotides on hepatocellular carcinoma cell proliferation.
The pathogenesis of diabetic retinopathy (DR) is complex. Antisense non-coding RNA (ANRIL) in the INK4 locus in long-chain non-coding RNA (lncRNA) is closely related to cell proliferation, differentiation, and individual development. It plays an important role in the dysplasia of retinal vascular endothelial cells and is a new field in the study of the pathogenesis of DR. According to the researches at present, ANRIL may plays its role in the occurrence and development of DR through the signal pathway of nuclear factor-κB and ROS/polyadenylation diphosphate ribose polymerase, and interact with p300, miR-200b, and EZH2 to regulating the expression and function of VEGF. Specific blocking ANRIL and its related pathways may become a new target in the treatment of DR.
Objective To investigate an inhibitive effect of the chitosan nanoparticles with the proliferation cell nuclear antigen (PCNA)-antisense oligo deoxy nucleotides (ASODN) on the intimal cell proliferation after the vein grafting.Methods Fiftyfour male SD rats, weighing 450-600g, were randomly divided in the experimental group and the control group of 27 rats each. In the experimental group, the chitosan nanoparticles with PCNAASODN were infused into the anastomosis segment of the right jugular artery and vein; then, the anastomosis segment was transplanted to the jugular artery on the same side. The rats in the control group were infused with normal saline by the same procedures. There were 24 rats in each group which used to experiment. The hemodynamic data were obtained from the Doppler ultrasound examinations at 1, 2, 3 and 4 weeks. The specimens were taken. Immunohistochemistry, Westernblot, and bloodvesselwall histopathology were performed at the different week points. Results There was no significant difference in the thrombogenesis rate between the experimental group and the control group (3/27 vs. 3/27,P>0.05). During the 4 week observation, PCNA Westernblot showed that the PCNA level was lower in the grafted vein and the anastomosis segment in the experimental group than in the control group. The indexes of the PCNA postive proliferating cells in the intimal area (0.13%±0.11%,0.79%±0.28%,0.45%±0.29%, 0.43%±0.25%) and the medial area (1.90%± 0.84%,2.11%±0.98%,2.48%±0.77%,2.17%±0.36%) were significantlydecreased at 1,2,3 and 4 weeks in the experimental group when compared with those in the control group(P<0.05). The lumen areas in the grafted vein (88.71±16.96,95.98±21.44,88.48±32.81,97.86±34.11 μm 2) and the anastomosis segment (41.49±3.34,45.15±11.65,46.27±8.90,51.62±8.85 μm 2) were significantly greater in the experimental group than in the control group (P<0.05). The ratios of the initmal area to the medial area in the grafted vein (22.73%±3.11%,32.40%±4.55%,45.14%±3.19%,45.70%±5.01%) and the anastomsis segment (41.49%±3.34%,45.15%±11.65%,46.27%±890%,51.62%±8.85%) were significantly smaller in the experimental group than in the control group(P<0.05). The maximum velocities (Vmax) of the blood flow inthe grafted vein and the anastomsis segment were almost the same in the two groups at 1 week, but had different changes at the next 3 weekpoints. In the control group, the Vmax of the blood flow gradually increased and at 3 weeks it reached the peak point; however, at 4 weeks it decreased. In the experimental group,the Vmax of the blood flow gradually decreased, and at 3 weeks it decreased to the lowest point; however, at 4 weeks it increased. So, at 4 weeks the Vmax of the blood flow in the grafted vein and the anastomsis segment was almost the samein the two groups. There was no significant difference in the Vmax of the bloodflow between the two groups (P>0.05), but in the same group there wasa significant difference at the different time points. Conclusion The chitosan nanoparticles with PCNAASODN can effectively inhibit the intimal cell proliferation after the grafting of the blood vessel, so that the neointimal thickening can be prevented.
Objective To investigate the reversal effect of antisense phosphorothioate oligonucleotide (ASOND) on human hepatoma resistant cells. Methods Human hepatoma resistant cells SMMC-7721 was transfected with synthetic antisense phosphorothioate oligonucleotide complementary to the 5′ region flanking the AUG initiation codon mediated by lipofectamine. In vitro drug sensitivity was measured by MTT assay. The expression of P-170 was determined by flow cytometry and mRNA was assessed by RT-PCR. Results ASOND inhibited the expression of mRNA and p-170 in SMMC-7721, enhanced the sensitivity of SMMC-7721 to chemotherapeutic drug. The best inhibitory effect was achived by the dose of 0.5μmol/L. Conclusion ASOND enhanced the sensitivity of SMMC-7721 to chemotherapeutic drug and reversed the multidrug resistance of SMMC-7721 partially.
Objective Col I A1 antisense oligodeoxyneucleotide (ASODN) has inhibitory effect on collagen synthesis in cultured human hypertrophic scar fibroblasts. To investigate the effects of intralesional injection of Col I A1 ASODN on collagen synthesis in human hypertrophic scar transplanted nude mouse model. Methods The animal model of humanhypertrophic scar transplantation was established in the 60 BALB/c-nunu nude mice (specific pathogen free grade, weighing about 20 g, and aged 6-8 weeks) by transplanting hypertrophic scar without epidermis donated by the patients into the interscapular subcutaneous region on the back, with 1 piece each mouse. Fifty-eight succeed models mice were randomly divided into 3 groups in accordance with the contents of injection. In group A (n=20): 5 μL Col I A1 ASODN (3 mmol/L), 3 μL l iposome, and 92 μL Opti-MEM I; in group B (n=20): 3 μL l iposome and 97 μL Opti-MEM I; in group C (n=18): only 100 μL Opti-MEM I. The injection was every day in the first 2 weeks and once every other day thereafter. The scar specimens were harvested at 2, 4, and 6 weeks after injection, respectively and the hardness of the scar tissue was measured. The collagens type I and III in the scar were observed under polarized l ight microscope after sirius red staining. The ultrastructures of the scar tissues were also observed under transmission electronic microscope (TEM). Additionally, the Col I A1 mRNAs expression was determined by RT-PCR and the concentrations of Col I A1 protein were measured with ELISA method. Results Seventeen mice died after intralesional injection. Totally 40 specimens out of 41 mice were suitable for nucleic acid and protein study, including 14 in group A, 13 in group B, and 14 in group C. The hardness of scars showed no significant difference (P gt; 0.05) among 3 groups at 2 weeks after injection, whereas the hardness of scars in group A was significantly lower than those in groups B and C at 4 and 6 weeks (P lt; 0.05), and there was no significant difference between groups B and C (P gt; 0.05). The collagen staining showed the increase of collagentype III in all groups, especially in group A with a regular arrangement of collagen type I fibers. TEM observation indicated that there was degeneration of fibroblasts and better organization of collagen fibers in group A, and the structures of collagen fibers in all groups became orderly with time. The relative expressions of Col I A1 mRNA and the concentrations of Col I A1 protein at 2 and 4 weeks after injection were significant difference among 3 groups (P lt; 0.05), and they were significantly lower in group A than in groups B and C (P lt; 0.05) at 6 weeks after injection, but no significant difference was found between groups B and C (P gt; 0.05). Conclusion Intralesional injection of Col I A1 ASODN in the nude mice model with human hypertrophic scars can inhibit the expression of Col I A1 mRNA and collagen type I, which enhances the mature and softening of the scar tissue. In this process, l iposome shows some assistant effect.
Objective To study the effects of survivin antisense RNA on SGC7901 cell’s apoptosis and chemosensitivity to taxotere, and to investigate its effect on the expression of multi-drug resistance gene-1 (MDR-1). Methods Survivin antisense eukaryotic vector anti-pcDNA3-svv was transfected into SGC7901 cell lines by lipofectamine and positive clones were screened out then. Survivin protein and MDR-1 mRNA were measured by western blot and RT-PCR, respectively. Apoptosis that was induced by anti-pcDNA3-svv was observed by electronic microscope, and the sensitivity of SGC7901 cell to taxotere was examined by MTT. Results The expressions of survivin protein and MDR-1 mRNA in transfected SGC7901 cells both decreased more significantly than that of non-transfected cells (P<0.05, P<0.01), and the indices of MDR of transfection group and non-transfection group were 0.196±0.013 and 3.126±0.019, respectively, at the late phase of apoptosis, which had a significant difference between each other (P<0.01), IC50 of the transfected cells to taxotere was (16.7±1.98) ng/ml and that of the non-transfected cells was (55.7±1.89) ng/ml, which also had a significant difference (P<0.01). Conclusion Surivivin antisense RNA could induce the apoptosis of SGC7901 cancer cell line and could increase the cells’ sensitivity to taxotere, which may help to reverse drug resistance.
【Abstract】ObjectiveTo study the effect of down-regulation of E-cadherin on the invasion ability of tumor cells. MethodsHuman pancreatic carcinoma cell line JHP-1 was treated with E-cadherin antisense oligodeoxynucleotied (ASODN). The immunocytochemistry, Western blot were used to detect the expression and the contents of E-cadherin in the tumor cells, and the invasive ability of tumor cells were evaluated by invasive-MTT assay. Results Treated with E-cadherin ASODN, the expression of E-cadherin on JHP-1 cells were reduced, and the protein contents were decreased as well compared with control groups and ODN group. The invasive ability of JHP-1 cells to the basement membrane was increased (P<0.001) compared with ODN group and control group. ConclusionE-cadherin was related to the invasive ability of tumor cells.
Objective To study the effects of glutaminase (GA) gene blocked by antisense nucleotide on apoptosis of transplanted gastric carcinoma cells in nude mice. Methods The plasmid containing antisense sequence of GA gene was trans-fected into gastric carcinoma cells , then the cells were injected to endermic tissue of nude mice to create animal models of gastric carcinoma. Apoptosis of tumor cells was detected by terminal deoxynucleotidyl transferase2mediated nick end labeling (TUNEL) method. The expression of GA mRNA in tumor tissue was measured by reverse transcription polymerase chain reaction (RT2PCR) technique. Results After the successful transfection of plasmid containing antisense sequence of GA gene into gastric carcinoma cells , the tumor’s growth speed decreased , apoptosis of tumor cells increased , and the expression of GA mRNA also decreased. Conclusion The antisense gene of GA could inhibit the expression of GA gene and significantly increase the apoptosis of gastric carcinoma cells.
Objective To investigate the inhibitory effect of survivin antisense oligonucleotides (ASODN) on proliferation of pancreatic cancer cells PANC-1. Methods The ASODN and sense oligodeoxynucleotides (SODN) were complementary to survivin sequences. FAM-marked ASODN was transfected into PANC-1 cells mediated by positive ion liposome as ASODN group. Blank control group (normal cells), negative control group (normal medium), and SODN group were established for comparison. The transfection efficiency was detected by flow cytometry (FCM) after transfection; MTT assay was used to detect cytotoxicity; Cell morphological changes were examined by transmission electron microscopy; The cell cycle and apoptotic rate were analyzed by FCM; Immunohistochemical staining techniques were used, and the expressions of survivin were observed under light microscopy, examined and analysed by computer image. Results ①The transfection efficiency was 31.9%, 37.4%, 41.4%, 52.6%, 24.2%, 11.4%, 16.1%, and 15.5% when the transfecting concentration of ASODN was 50, 100, 150, 200, 250, 400, 600, and 800 nmol/L, respectively; The transfection efficiency was 12.0%, 50.8%, and 11.2% when the inoculated cells was 2×104/well, 2×105/well, and 2×106/well, respectively; The transfection efficiency was 58.8%, 34.0%, and 23.6% when 2 μl, 3 μl, and 4 μl liposome was used during transfection, respectively. ②Cell gap was oversize, morphous was round, adherent cells were less after transfection under fluorescence microscope. ③The inhibition rate in the ASODN group was higher than that in each control group (Plt;0.05) on 24, 36, 48 h after treating by survivin ASODN, which increased as time prolonged (Plt;0.05). ④The apoptosis showed a ladder-shaped line in the ASODN group. ⑤Apoptotic morphology was demonstrated in the ASODN group, such as apoptotic cells with nuclear chromatin highly concentrated, crescent nuclear staining aggregated by the side nuclear membrane, nucleolus disappeared by AO and EB stains. ⑥The apoptotic rate 〔(38.1±3.4)%〕 in the ASODN group was higher than that in the SODN group 〔(4.16±1.7)%〕, Plt;0.05. ⑦G2/M cell cycle arrested in the ASODN group. ⑧After transfection, the expression of survivin protein in the ASODN group was significantly lower than that of each control group (Plt;0.05). Conclusions The optimal transfection conditions are as following: the cell count of 2×105/well, concentration of ASODN 200 nmol/L, and cationic liposome oligofectamine 2 μl, respectively. Survivin ASODN can inhibit the proliferation of pancreatic cancer cells and induce their apoptosis.