Objective To evaluate the inhibiting effect of adenosine on rat retinal ganglion cells (RGC) death induced by P2X7 and N-methyl-D-aspartate (NMDA) receptor. Methods (1) Long-Evan neonatal rats were back labeled with aminostilbamidine to identify RGC. The viability of RGC affected by P2X7 excitomotor BzATP (50 mu;mol/L), glutamate receptor excitomotor NMDA (100 mu;mol/L) and adenosine (300 mu;mol/L) was detected. (2) RGC from the retinae of unlabeled neonatal rats were cultured in vitro. After labeled with Fura-2 methyl acetate, an intracellular calcium indicator, the effect of BzATP, NMDA and adenosine on intracellular Ca2+ level was detected byCa2+ imaging system. Results Both BzATP (50 mu;mol/L) and NMDA(100 mu;mol/L) could kill about 30% of the RGC. Cell death was prevented by adenosine (300 mu;mol/L) with the cell viability increased from (68.9plusmn;2.3)% and (69.9plusmn;3.2)% to (91.2plusmn;3.5)% (P<0.001) and (102.1plusmn;3.9)% (P<0.001), respectively. BzATP (50 mu;mol/L) led to a large, sustained increase of intracellular Ca2+ concentration to (1183plusmn;109) nmol/L. After the adenosine intervened, Ca2+ concentration increased slightly to (314plusmn;64) nmol/L (P<0.001). Conclusion Adenosine may prevent RGC death and increase of intracellular Ca2+ concentration from P2X7and NMDA receptor stimulation. (Chin J Ocul Fundus Dis, 2007, 23: 133-136)
Objective To study the effects of adenosine 2A receptor activation on activation, proliferation, and toxicity of T lymphocytes stimulated by phytohemagglutinin (PHA) in vitro. Methods A model of activated T cells was established by stimulating the cells with PHA. Those T cells were treated with different concentrations of adenosine 2A receptors agonist (0.01 μmol/L, 0.1 μmol/L, 1 μmol/L, and 10 μmol/L CGS21680). The expressions of CD69, CD25 and proliferation of T cells were measured by fluorescent antibody stain and flow cytometry. ELISA method was used to detect IL-2 and INF-γ levels. Results All concentrations of CGS21680 significantly inhibited the expressions of CD25 and CD69 on PHA-stimulated T cells surface and proliferation of T cells (Plt;0.05, Plt;0.01). IL-2 and INF-γ secreted by T cells were significantly suppressed, too (Plt;0.01). Conclusion Activation of adenosine 2A receptor can effectively inhibit the activation, proliferation, and toxicity of T cells in vitro.
The aim of this study is to assess ischemia/reperfusion injury in carbon tetrachloride induced cirrhotic liver as compared to normal liver in the rats. Results showed that in cirrhotic liver, instead of diminishing the hepatic vein nitric oxide level increased significantly after ischemia from 8.04 μmol/L to 11.52 μmol/L and remained high till 5 hrs after reperfusion. The hepatic adenosine triphosphate (ATP) contents decreased as that seen in normal rat but did not restore to normal till the end of 5 hrs after reperfusion. Based on these findings, it is postulated that in cirrhotic liver, ischemia/reperfusion injury is aggrvated as evidenced by of nitric oxide, and extended diminishing in ATP.
Objective Adenosine tri phosphate (ATP) can promote the repair of spinal cord injury (SCI). To investigate the effect of ATP combined with bone marrow mesenchymal stem cells (BMSCs) transplantation on SCI, and to evaluate the synergistic action of ATP and BMSCs in the repair of SCI and the feasibil ity of the combined transplantation in the treatment of SCI. Methods BMSCs were isolated from the marrow of the tibia and the femur of a male SD rat (weighing 120 g), the 3rd generation BMSCs were labeled with BrdU, then BMSCs suspension of 5.0 × 107 cell/mL were prepared. Fortyeightadult female SD rats (weighing 240-260 g) were made SCI models at T12 levels according to the improved Allen’s method, and were randomly divided into 4 groups (groups A, B, C, and D, n=12). In group A, ATP (40 mg/kg) and BMSCs (6 μL) were injected to the central point and the other 2 points which were 1 mm from the each side of head and tail of the injured spinal cord; after blending the BMSCs suspension, the cells amount was about 3.0 × 105. In groups B, C, and D, the BMSCs suspension (6 μL), ATP (40 mg/kg), and PBS (40 mg/kg) were injected to the points by the same method as group A, respectively. The general conditions of the rats were observed after operation. The nerve function of low extremities was evaluated using the improved Tarlov scale and the Rivil in incl ined plane test at 1, 3, 7, 14, 21, and 28 days after operation. At 28 days after operation, the reparative effect of SCI was observed using histological and immunohistochemical staining. Results One rat of group A, 2 of group B, 2 of group C, and 3 of group D died of infection and anorexic, the others survived to the end of the experiment. Paralysis symptom in low extremities occurred in all rats after operation and was improved at 2-3 weeks postoperatively, the improvement of group A was the best, groups B and C were better, group D was the worst. There was no significant difference in the Tarlov scale and the Rivil in incl ined plane test among 4 groups at 1 and 3 days after operation and between groups B and C at 7, 14, 21, and 28 days after operation (P gt; 0.05), but there were significant differences among other groups at 7, 14, 21, and 28 days after operation (P lt; 0.05). At 28 days after operation, HE staining demonstrated that the injured region in group A was finely restored, without obvious scar tissue and cavity, and there existed clear stem cell differentiation characters; there was small amount of scar tissue and cavity in the injury site of groups B and C; and there was great deal of scar tissue in the injury site of group D, in which there were numerous inflammatory cells and fibroblasts infiltration and bigger cavity. Immunohistochemical staining showed that BrdU-positive BMSCs were seen in groups A and B, and positive cells of group A was significantly more than that of group B (P lt; 0.05). The expressions of neruofilament protein 200 and gl ial fibrillary acidic protein in group A were significantly higher than those in groups B, C, and D, and groups B and C were significantly higher than group D (P lt; 0.05). Conclusion ATP has protective effects on injured spinal cord, a combination of ATP and BMSCs can synergistically promote the reparation of SCI.
Objective To investigate the effect of adiponectin on proliferation of airway smooth muscle cells( ASMCs) , and explore its possible mechanism. Methods ASMCs were derived fromrat airway tissue and were cultured in vitro. RT-PCR was used to verify the expression of adiponectin receptors on ASMCs. Then ASMCs were treated with adiponectin at different concentrations( 5, 10, 20, 40, 80 μg/mL) for different periods of time( 1, 12, 24, 48, 72 hours) , respectively. The absorbsence ratios of adiponectin at different concentrations were determined by MTT assay. The adenosine monophosphate-activated protein kinase( AMPK) and phosphorylated AMPK( pho-AMPK) in ASMCs were quantified by Western blot after being treated with adiponectin at different concentrations ( 5, 10, 20, 40 μg/mL) for 48 hours. ResultsThe inhibition of adiponectin on ASMCs was showed in dose-dependent manner( r = 0. 324, P lt; 0. 01) and time-dependent manner( r = 0. 607, P lt; 0. 05) . Western blot indicated that the expression of pho-AMPK increased with the increased concentrations of adiponectin( r =0. 607, P lt; 0. 01) . The ratio of pho-AMPK/AMPK were ( 27. 66 ±1. 03) % , ( 31. 91 ±0. 86 ) %, ( 75. 52 ±2. 67) % , and ( 84. 50 ±1. 05) % ,respectively, with significant differences between each concentrations of adiponectin( P lt; 0. 05) . There was no expression of pho-AMPK in the control group. Conclusion Adiponectin can significantly inhibit ASMCs’proliferation by activating AMPK.
Objective To investigate the mechanism of adenosine-tri phosphate (ATP) activated mammal ian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) signal pathway in the physiology and pathology of spinal cord injury (SCI). Methods Ninety-six adult healthy female Sprague-Dawley rats were randomly divided into 4 groups (groups A, B, C and D, n=24). In groups A, B and C, the rats were made the SCI models at T8-10 levels by using a modified Allen’ s stall, and in group D, rats were given laminectomy without SCI. The rats were subjected to the administration of ATP (40 mg/kg) for 7 days in group A, to the administration of physiological sal ine (equal-volume) for 7 days in group B, to the administration of ATP (40 mg/kg) and rapamycin (3 mg/kg) for 7 days in group C, and to the administration of physiological sal ine (equal-volume) for 7 days in group D. Locomotor activity was evaluated using the Basso-Beattie-Bresnahan rating scale at the postoperative 1st, 2nd, 3rd, and 4th weeks. Then, the expressions of spinal cord cell marker [Nestin, neuron-specific enolase (NSE), gl ial fibrillary acidic protein (GFAP)] and the mTOR/STAT3 pathway factors (mTOR, STAT3) were detected at the postoperative 1st, 2nd, 3rd, and 4th weeks by immunohistochemistry analysis, Western blot assay, and real-time fluorescence PCR analysis. Results The BBB scores in group A showed a steady increase in the postoperative 1st-4th weeks and were significantly higher than those in groups B and C (P lt; 0.01), but were lower than that in group D (P lt; 0.01). Real-time fluorescence PCR results showed that the mRNA expressions of mTOR, STAT3, NSE of group A steadily increased, however, the Nestin mRNA expression gradually decreased in the postoperative 1st-4th weeks, which were all significantly higher than those of groups B, C, and D (P lt; 0.01). The mRNA expression of GFAP showed a steady increase in group A and was significantly less than those of groups B and C, but was higher than that of group D (P lt; 0.01). There were significant differences (Plt; 0.01) in all markers between groups B, C, and group D; there were significant differences in mTOR, P-mTOR, STAT3, and P-STAT3 mRNA between groups B and C at 1st-4th weeks (P lt; 0.05). The similar changes were found by Western blot assay. Conclusion ATP can activate the mTOR/STAT3 pathway to induce endogenic NSCs to prol iferate and differentiate into neurons in rats, it enhances the heal ing of SCI.
Abstract: Objective To investigate the protective effects of adenosine (ADO) on lung ischemia/reperfusion injury following heart-lung transplantation in canine. Methods Canine heart-lung transplantation was performed.Canines were divided into two groups: transplant control groupand ADO group. The changes of arterial partial pressure of oxygen(PaO2) after reperfusion in two groups at 30,60,90,120 min were observed.The tissue contents of nitric oxide (NO) were measured at 10 min before ischemia, 10 min and 120 min after ischemia; 10 min and 60 min after reperfusion.The lung tissue samples were obtained 1h after reperfusion.The tissue myeloperoxidase(MPO) activity,content of malondialdehyde(MDA), content of superoxide dismutase(SOD), wet/dry ratio of lung(W/D) were measured.Microscopic examination of lungs was also conducted. Results (1)In ADO group,PaO2 were significantly higher than that in control group at 30,60,90 and 120 min after reperfusion (Plt;0.05).(2) The tissue contents of NO at 120 min after ischemia, 10 min and 60 min after reperfusion were significantly lower than that at 10 min before ischemia(Plt;0.05). In ADO group,the tissue contents of NO at 120 min after ischemia, 10 min and 60 min after reperfusion were higher than that in control group respectively(Plt;0.05). (3)The tissue MPO activity, content of MDA, W/D in ADO group were significantly lower than those in corresponding control group. The content of SOD in ADO group were higher than that in control group(Plt;0. 05).(4)The microscopic examination showed that there were severe leukocyte infiltration and edema formation in the alveolar space in control group, but the changes were less severe in ADO group. Conclusion Administration of ADO in canine heart-lung transplantation can protect the donor lung against ischemia/reperfusion injury.
ObjectiveTo explore the relationship between mitochondrial function and the severity of sepsis by detecting the platelet mitochondrial permeability transition pore, transmembrane potential and adenosine triphosphate (ATP) levels in peripheral blood. MethodsAccording to random number table, 40 male SD rats were randomly divided into three sepsis model groups (group A, B and C) and a sham group (group D). The rats in the model groups received cecal ligation and puncture (CLP) treatment with different percent of ligated length in total length of the cecum (10% in group A, 30% in group B and 50% in group C, respectively). Twenty-four hours later, peripheral blood was collected for TNF-α, IL-1βand IL-6 levels determination, also the mitochondrial permeability transition pore, transmembrane potential and ATP content were tested in the isolated platelet. One-way ANOVA test was used to determine the relevance between above indices and the severity of sepsis. Meanwhile, 29 patients with sepsis were enrolled for clinical study. After APACHEⅡscoring, platelet samples of peripheral blood in the patients were collected for mitochondrial function determination. The relationship between mitonchondrial function and APACHEⅡscore was analyzed by Spearman method. ResultsCalcein fluorescence, membrane potential and ATP synthesis in platelet mitochondria of the rat sepsis model were gradually decreased with the increased severity of CLP, and the difference among these groups were all statistically significant (all P < 0.05). In clinical specimens, APACHEⅡscore was negatively correlated with ATP level of platelet mitochondria(r=-0.895, P < 0.05). ConclusionMitochondrial function of platelet in peripheral blood can be used as an effective indicator for the severity of sepsis.
Objective To investigate the effects of adenosine 2A receptor (A2AR) activation on oxidative stress in small-forsize liver transplantation. Methods A rat orthotopic liver transplantation model was performed using 40% graft, 18 recipients were given intravenously saline (control group), CGS21680 (A2AR agonist, CGS21680 group) or ZM241385 (A2AR antagonist, CGS21680+ZM241385 group) randomly. Aspartate aminotransferase (AST), enzymatic antioxidants 〔superoxide dismutase (SOD); catalase (CAT); glutathione peroxidase (GSH-Px)〕, non-enzymatic antioxidants 〔ascorbic acid (AA); glutathione (GSH); α-tocopherol (TOC)〕 and lipid oxidant metabolites malondialdehyde (MDA) were measured and analyzed at 6 h after reperfusion. Results Compared with the control group and CGS21680+ZM241385 group, A2AR activation increased the activities of SOD and GSHPx (Plt;0.05), reduced the productions of AST and MDA (Plt;0.05), increased the levels of AA, GSH and TOC (Plt;0.05) in CGS21680 group. But there was no significant change in CAT activity (Pgt;0.05) among 3 groups. Conclusions A2AR activation improves the antioxidant enzyme activities, promotes the production of antioxidants, and slowes down the increase in MDA level, depresses of the increase in AST activity. A2AR activation suppresses oxidative damage and increases the antioxidant capacity which in turn minimizes their harmful effects of ischemia-reperfusion in small-for-size liver transplantation.
Adenosine activated protein kinase (AMPK) is a serine/threonine protein kinase that can sense the change of intracellular energy. AMPK plays a critical part in the occurrence and development of tumors. According to the difference of AMPK catalytic subunits, it is divided into AMPKα1 and AMPKα2. The AMPKα1 subunit is the catalytic subunit of AMPK and is extensively distributed in the various tissues and organs. This review focuses on the structural, activated and functional aspects of AMPKα1 and the involvement of AMPKα1 in the regulation of intracellular substance metabolism, and summarizes the respective performances of AMPKα1 in different cancers and the corresponding potential applications of AMPKα1 as a drug target in the relevant cancers. AMPKα1 can be used as a diagnostic marker or drug target for cancer diagnosis and therapy, providing an idea for cancer treatment, which has importance clinical significance.