Objective Making an individualized pharmacological treatment plan for a patient of acute respiratory distress syndrome after operation. Methods First, six clinical problems were put forward after assessing the patient’ s health state. Then we searched OVID versions of the ACP Journal Club (1991~2009), CENTRAL (1st Quarter 2009), CDSR (1st Quarter 2009), and MEDLINE (1991~2009) databases. Systematic reviews, meta-analyses, and randomized clinical trials about treatment of acute respiratory distress syndrome were included. The pharmacological treatment plan was made accordingly.Results After evaluation, 13 studies were eligible. The evidence indicated that the restrictive strategy of fluid management, corrected hypoproteinaemia, diuresis, and low-dose corticosteroids given in the early phase could improve oxygenation and prognosis; inhaled nitric oxide, exogenous surfactant supplement, other pharmacological drugs were associated with limited improvement in oxygenation in patients with ARDS but confer no mortality benefit and may cause harm, so we did not recommend their routine use in ARDS patients. The individual treatment plan was made based on the evidence found. After 8 days of treatment, the patient was out the ICU. He recovered and was discharged after 1 month. Conclusions The individual treatment plan, which was made based on high quality evidence and patient’s condition, improved treatment efficacy, shortened the stay in ICU, reduced mortality, and decreased adverse reactions.
Objective To investigate the serumlevel of endothelin-1 ( ET-1) in patients with acute lung injury/acute respiratory distress syndrome ( ALI/ARDS) and its clinical significance. Methods Thirty-one ALI/ARDS patients received mechanical ventilation in ICUand 25 normal subjects were recruited in the study. The patients who died in two weeks fell in death group, and the patients who did not died in two weeks fell in survival group. The serum level of ET-1 measured by EIA method were compared between thepatients with different severity of lung injury [ evaluated by American-European Consensus Conference on ARDS ( AECC) criteria and lung injury score( LIS) ] , and between the patients with different prognosis ( death or survival ) . The correlation was analyzed between the level of ET-1 and clinical parameters.Results The ET-1 level was higher in the ALI/ARDS patients than that in the control subjects [ ( 6. 18 ±4. 48) ng/L vs. ( 2. 68 ±1. 34) ng/L, P lt;0. 05] . There was no significant difference in the patients with different severity [ ALI vs. ARDS, ( 5. 43 ±4. 39) ng/L vs. ( 7. 01 ±4. 51) ng/L, P gt; 0. 05; LIS≤2. 5 vs.LISgt;2. 5, ( 5. 93 ±5. 21) ng/L vs. ( 6. 68 ±2. 76) ng/L, P gt; 0. 05] . The ET-1 level in the death group continued to increase, and higher than that in the survival group on the 5th day [ ( 7. 96 ±3. 30) ng/L vs.( 4. 36 ±3. 29) ng/L, P lt; 0. 05] . The ET-1 level was positively correlated with SIRS, SAPSⅡ and APACHEⅡ ( r = 0. 359, 0. 369 and 0. 426, respectively, P lt; 0. 05 ) , and negatively correlated with PaO2 /FiO2 and AaDO2 ( r = - 0. 286 and - 0. 300, respectively, P lt;0. 05) . Conclusion The measurementof serum ET-1 can help to evaluate the severity and prognosis of ALI/ARDS patients.
Objective To investigate the effect of microRNA-22-3p (miR-22-3p) on the inflammation of human pulmonary microvascular endothelial cells (HPMEC) induced by lipopolysaccharide (LPS) by regulating the HMGB1/NLRP3 pathway. Methods miRNA microarray was taken from peripheral blood of patients with acute respiratory distress syndrome (ARDS) caused by abdominal infection and healthy controls for analysis, and the target miRNA was selected. miRNA mimics, inhibitor and their negative controls were transfected in HPMECs which were stimulated with LPS. Real time fluorescent quantitative polymerase chain reaction (RT-qPCR) and Western blot were used to detect the mRNA and protein levels of high mobility group box-1 protein (HMGB1) and nucleotide binding oligomerization segment like receptor family 3 (NLRP3). RT-qPCR and enzyme linked immunosorbent assay were used to detect the levels of inflammatory factors in the cells and supernatant. Results miRNA microarray showed that miR-22-3p was down-regulated in the plasma of patients with ARDS. Compared with the negative control group, after miR-22-3p over-expression, the protein and mRNA levels of HMGB1 and NLRP3 decreased significantly. Similarly, the level of cleaved-caspase-1 decreased significantly. At the same time, interleukin (IL)-6, IL-8 and IL-1β mRNA level in cytoplasm and supernatant were down-regulated by miR-22-3p mimics. After transfected with miR-22-3p inhibitor, the expression levels of HMGB1, NLRP3, caspase-1 protein and inflammatory factors were significantly up-regulated. Conclusion miR-22-3p is significantly downregulated in peripheral blood of ARDS patients caused by abdominal infection, which can inhibit the expression of HMGB1 and NLRP3 and its downstream inflammatory response in HPMECs.
ObjectiveTo investigate the mechanism of lung tissue apoptosis in LPS-induced mice ARDS via TNF-α neutralization. MethodsThirty-six mice were randomly divided into a control group,a LPS group,and TNF-α neutralization group.LPS(5 mg/kg) was intratracheally nebulized to induce ARDS in the LPS group and the TNF-α neutralization group.Twenty-four hours before LPS treatment,etanercept (0.4 mg/kg) was abdominal injected to the mice in the TNF-α neutralization group.Mice were sacrificed 2 hours after LPS treatment.PCR were used to detected the expression of NF-κB p65,Bax and Bcl-2 in lung tissue.Western blot were used to detected protein level of NF-κB p65,Erk1/2 and their phosphorylation and Bax,Bcl-2.The lung dry-to-wet ratio was measured.The lung histological changes were evaluated by HE staining. ResultsActivation level of NF-κB p65 and Erk1/2 was elevated,the ratio of Bcl-2 and Bax was decreased in the LPS group(P<0.05).After TNF-α neutralization,the activation level of NF-κB p65 and Erk1/2 were reduced,the ratio of Bcl-2 and Bax was increased (P<0.05).Compared with the LPS group,the lung dry-to-wet ratio and lung injury semi-quantitative score were significantly decreased in the TNF-α neutralization group (P<0.05). ConclusionTNF-α neutralization can suppress lung injury in LPS-induced ARDS mice by inhibiting activation of NF-κB p65 and Erk1/2,increasing the ratio of Bcl-2 and Bax ratio,and eventually reducing apoptosis.
ObjectiveTo investigate the clinical characteristics and contribution factors in severe coronavirus disease 2019 (COVID-19).MethodsThe clinical symptoms, laboratory findings, radiologic data, treatment strategies, and outcomes of 110 COVID-19 patients were retrospectively analyzed in these hospitals from Jan 20, 2020 to Feb 28, 2020. All patients were confirmed by fluorescence reverse transcription polymerase chain reaction. They were classified into a non-severe group and a severe group based on their symptoms, laboratory and radiologic findings. All patients were given antivirus, oxygen therapy, and support treatments. The severe patients received high-flow oxygen therapy, non-invasive mechanical ventilation, invasive mechanical ventilation or extracorporeal membrane oxygenation. The outcomes of patients were followed up until March 15, 2020. Contribution factors of severe patients were summarized from these clinical data.ResultsThe median age was 50 years old, including 66 males (60.0%) and 44 females (40.0%). Among them, 45 cases (40.9%) had underlying diseases, and 108 cases (98.2%) had different degrees of fever. The common clinical manifestations were cough (80.0%, 88/110), expectoration (33.6%, 37/110), fatigue (50.0%, 55/110), and chest tightness (41.8%, 46/110). Based on classification criteria, 78 (70.9%) non-severe patients and 32 (29.1%) severe patients were identified. Significant difference of the following parameters was found between two groups (P<0.05): age was 47 (45, 50) years vs. 55 (50, 59) years (Z=–2.493); proportion of patients with underlying diseases was 27 (34.6%) vs. 18 (56.3%) (χ2=4.393); lymphocyte count was 1.2 (0.9, 1.5)×109/L vs. 0.6 (0.4, 0.7)×109/L (Z=–7.26); C reactive protein (CRP) was 16.2 (6.5, 24.0) mg/L vs. 45.3 (21.8, 69.4) mg/L (Z=–4.894); prothrombin time (PT) was 15 (12, 19) seconds vs. 18 (17, 19) seconds (Z=–2.532); D-dimer was 0.67 (0.51, 0.82) mg/L vs. 0.98 (0.80, 1.57) mg/L (Z=–5.06); erythrocyte sedimentation rate (ESR) was 38.0 (20.8, 59.3) mm/1 h vs. 75.5 (39.8, 96.8) mm/1 h (Z=–3.851); lactate dehydrogenase (LDH) was 218.0 (175.0, 252.3) U/L vs. 325.0 (276.5, 413.5) U/L (Z=–5.539); neutrophil count was 3.1 (2.1, 4.5)×109/L vs. 5.5 (3.7, 9.1)×109/L (Z=–4.077). Multivariable logistic analysis showed that there was positive correlation in elevated LDH, CRP, PT, and neutrophil count with the severity of the disease. Currently, 107 patients were discharged and 3 patients died. Total mortality was 2.7%.ConclusionsOld age, underlying diseases, low lymphocyte count, elevated CPR, high D-dimer and ESR are relevant to the severity of COVID-19. LDH, CPR, PT and neutrophil count are independent risk factors for the prognosis of COVID-19.
Objective To investigate the expression of S100A12 protein in peripheral blood of patients with acute respiratory distress syndrome (ARDS) and its clinical significance. Methods Sixty ARDS patients admitted between October 2015 and December 2016 were included in the study. They were divided into a mild group (n=20), a moderate group (n=20) and a severe group (n=20) according to the oxygenation state. Meanwhile they were divided into a survival group (n=37) and a death group (n=23) according to the 30-day prognosis. Sixty simultaneous healthy subjects were selected as a control group. The clinical data of all subjects were collected. Fasting venous blood was collected in the morning for measurement of S100A12 expression in peripheral blood by ELISA method. Results Compared with the control group, the levels of S100A12, interleukin-1 (IL-1), tumor necrosis factor alpha (TNF-α) in peripheral blood and APACHEⅡ score were significantly increased in the ARDS patients, and PaO 2/FiO 2 was significantly decreased (all P<0.05). The level of S100A12 in peripheral blood was positively correlated with the severity of ARDS. The level of S100A12 was much higher in the severe group than that in the moderate group and the mild group, and higher in the moderate group than that in the mild group (allP<0.05). Correlation analysis showed that S100A12 level in peripheral blood of the ARDS patients was positively correlated with IL-1, TNF-α and APACHEⅡ score (P<0.05), but negatively correlated with PaO 2/FiO 2 (P<0.05). Logistic regression analysis showed that IL-1, TNF-α, APACHEⅡ score and S100A12 were independent risk factors for prognosis of ARDS. PaO 2/FiO 2 was an independent protective factor for prognosis of ARDS. ROC curve analysis showed that the S100A12 level had a certain predictive value for ARDS and could be used as a prognostic indicator. Conclusions The level of S100A12 in peripheral blood of ARDS patients is significantly increased and is closely related to the severity of ARDS. It has a potential clinical value for early diagnosis, treatment and prognosis of ARDS.
ObjectiveTo investigate the clinical signification of plasma interleukin-17 (IL-17) 1evel in patients with acute respiratory distress syndrome (ARDS).MethodsForty-five adult ARDS patients and 22 healthy controls were enrolled in this study. The plasma cytokine levels of IL-17, IL-6 and IL-10 were measured by enzyme linked immunosorbent assay. Meanwhile, the baseline data of demographic and clinical tests including oxygenation index, procalcitonin and brain natriuretic peprtide were collected, the acute physiological and chronic health Ⅱ (APACHEⅡ) score and sequential organ failure assessment (SOFA) score were recorded. The main outcome was defined as hospital mortality within 28-day follow-up.ResultsThe plasma concentration of IL-17, IL-6 were higher in the ARDS patients (P<0.05) compared with the controls and the mean levels of IL-17, IL-6 and the APACHEⅡ score and the SOFA score in the non-survivors was higher than those in the survivors (P<0.05). In particular, there was a significant correlation between the plasma levels of IL-17 and IL-6 (P<0.05). Logistic regression and COX multivariate survival analysis suggested that age and SOFA score may be prognostic factors for ARDS.ConclusionsThe plasma concentration of IL-17 is significantly increased in ARDS patients, and its expression is linearly related to the proinflammatory factor IL-6. Both are important inflammatory markers in the acute phase of ARDS and may be important disease severity and prognostic indicators in addition to age and SOFA score.
Objective To Assess the efficacy of using lung ultrasound to guide alveolar recruitment maneuver in patients with acute respiratory distress syndrome (ARDS). Methods Sixty patients with ARDS were randomly divided into two groups, ie, maximal oxygenation group (n=30) and lung ultrasound group (n=30). All the patients had artificial airway and needed mechanical ventilation. The patients in the two groups accepted recruitment maneuver guided by maximal oxygenation or lung ultrasound respectively. During the course of recruitment maneuver, the arterial partial pressure of oxygen (PaO2), positive end-expiratory pressure (PEEP), central venous pressure (CVP), mean arterial pressure (MAP), cardiac output (CO), and extravascular lung water index (EVLWI) were recorded and compared between both groups. Results The PaO2 in lung ultrasound group was higher than that in maximal oxygenation group (P=0.04). The PEEP was higher in lung ultrasound group but without significant difference (P=0.910). There was no significant difference of the other outcomes (CVP, MAP, CO, EVLWI) between the two groups (all P>0.05). Conclusion Lung ultrasound is an effective means that has good repeatability and security for guiding recruitment maneuver in patients with ARDS.
ObjectiveTo establish paraquat (PQ)-induced acute respiratory distress syndrome (ARDS) mice model via gavage, in order to simulate oral adminitration in clinical situations.MethodsSeventy-eight 6-8-week-old, specific pathogen free female C57 mice were chosen in this study. The mice were randomly divided into the control group (n=6) and the PQ model group(n=36); the mice in the latter group were randomly divided into 6 poisoning model subgroups further, with 6 mice in each, to find out the suitable concentration of PQ to establish stable ARDS model. The mice in the control group were given phosphatebuffer saline (PBS) by gavage, 200 μL per mouse; while the mice in the 6 poisoning model subgroups were given PQ with varies doses of 3, 10, 30, 100, 150, 300 mg/kg respectively by gavage. The clinical manifestations were observed for 7 days, and the ratio of lung wet/dry (W/D) was measured. After the suitable concentration of PQ for stable ARDS mice model was found, the other 36 mice were randomly divided into the controlgroup and the poisoning model group, both were divided into 4 subgroups, according to different observation point in time (1 day and 2, 3, 4 days after PQ gavage). The mice in the 4 control subgroups (n=3) were given PBS by gavage, 200 μL per mouse; while the mice in the 4 poisoning model subgroups (n=6) were given PQ with the suitable concentration for ARDS mice model by gavage. Pathological manifestations by Haematoxylin-Eosin staining and lung injury score were observed and analyzed.ResultsThe mice began to die at the PQ dosage of 150 mg/kg; while the death rate was stable at 300 mg/kg. On the 2nd and 4th day after PQ gavage, lung W/D was 5.335, 6.113, and 5.525, and 6.403, respectively in the mice in 150 and 300 mg/kg subgroup, which differed much from those in the control group (P<0.001). Congestion, edema, hemorrhage, alveolar structure damage, inflammation cells infiltration of lung tissue were observed, and lung injury score increased.ConclusionPQ-induced ARDS mice model by gavage is established successfully.
Objective To investigate the guiding value of bedside lung ultrasound and lung stretch index for optimal positive end-expiratory pressure (PEEP) in lung recruitment of patients with acute respiratory distress syndrome (ARDS). Methods From February 2020 to October 2023, 90 patients with ARDS requiring invasive mechanical ventilation were selected from the Department of Critical Care Medicine, the Second Affiliated Hospital of Zhengzhou University. According to the setting method of PEEP after lung recruitment, they were randomly divided into an ultrasound group (45 cases) and a stretch group (45 cases). Both groups were treated with PEEP incremental method for lung recruitment, and the ultrasound group was treated with bedside ultrasound-guided method to set PEEP after lung recruitment. PEEP was set by lung stretch index method in the stretch group. The dynamic changes of oxygenation index (PaO2/FiO2), dynamic compliance (Cdyn), mean airway pressure and peak airway pressure were monitored before lung recruitment and 15 min, 1 h, 6 h and 24 h after lung recruitment. Heart rate, mean arterial pressure and central venous pressure were monitored before and 24 h after lung recruitment in the two groups. The optimal PEEP value and the corresponding volume at the end of recruitment were explored. The mechanical ventilation time, ICU hospitalization time, incidence of barotrauma, incidence of extrapulmonary organ failure, and 28-day mortality were recorded as well. Results After lung recruitment, the oxygenation index, Cdyn, mean airway pressure, and peak airway pressure in the ultrasound group were higher than those in the stretch group at 15 min, 1 h, 6 h, and 24 h after recruitment (all P<0.05). There was no significant difference in heart rate, mean arterial pressure or central venous pressure between the two groups at 24 h after lung recruitment (all P>0.05). After lung recruitment, the optimal PEEP value and the corresponding volume at the end of recruitment in the ultrasound group were higher than those in the distraction group (both P<0.05). The mechanical ventilation time and ICU stay in the ultrasound group were shorter than those in the stretch group (both P<0.05). There was no significant difference in the incidence of barotrauma, extrapulmonary organ failure rate or 28-day mortality between the two groups (all P>0.05). Conclusions Both bedside lung ultrasound-guided PEEP and lung stretch index-guided PEEP can improve oxygenation and respiratory compliance, and have no adverse effects on hemodynamics. Bedside lung ultrasound-guided PEEP can make the alveoli fully expand, which is more conducive to improving patients’ oxygenation and respiratory compliance, and the guiding value is higher than the lung stretch index.