• <table id="gigg0"></table>
  • west china medical publishers
    Keyword
    • Title
    • Author
    • Keyword
    • Abstract
    Advance search
    Advance search

    Search

    find Keyword "雷帕霉素靶蛋白" 13 results
    • The role of mTOR signaling pathway in bleomycin-induced pulmonary fibrosis at mice

      ObjectiveTo investigate the mechanism of mTOR signaling pathway in bleomycin (BLM)-induced pulmonary fibrosis in mice.MethodsSixty C57BL/6 mice were randomly divided into a control group and a BLM group. Pulmonary fibrosis model was induced by single intratracheal instillation of bleomycin (2.5 mg/kg) in the BLM group. Similarly, 0.9% saline was instilled directly into the trachea in the control group. Then all mice were sacrificed at 21 days. The lungs were collected for morphometric analysis with HE and Masson staining. The degree of pulmonary fibrosis was evaluated with Ashcroft score. The activity of mTOR signaling pathway was measured by Western blot. The level of collagen1, collagen3 mRNA was assessed with quantitative real time PCR.ResultsThe thickening alveolar septa, accumulation of inflammatory cells, and fibrous obliteration in the BLM group were exhibited predominantly compared with the control group. There was a significant difference in Ashcroft score between the BLM group and the control (P<0.05). Also, the activity of mTOR signaling pathway was up-regulated and the expression of collagen1 mRNA and collagen3 mRNA was increased in the BLM group.ConclusionAberrant activation of mTOR signaling pathway aggravates the pulmonary fibrogenesis.

      Release date:2018-03-29 03:32 Export PDF Favorites Scan
    • Human umbilical cord mesenchymal stem cell exosomes target miR-126 regulate the expression of vascular endothelial growth factor-A in high glucose-induced human retinal vascular endothelial cells

      ObjectiveTo explore the involvement of miR-126 and the role of mammalian target of rapamycin (mTOR)/hypoxia-induced factor 1 α (HIF-1 α) pathway in regulating human umbilical cord mesenchymal stem cells (hUCMSCs) exosomes (Exo) on vascular endothelial growth factor (VEGF)-A levels in high glucose-induced human retinal vascular endothelial cells (HRECs). MethodsThe hREC was cultured in EGM-2-MV endothelial cell culture medium with 30 mmol/L glucose and placed in hypoxic cell incubator by 1% oxygen concentration. The cell model of high glucose and low oxygen was established. After modeling, divided HRECs into Exo group, phosphate buffer saline (PBS) group, PBS+anti-miR126 group, Exo+anti-miR126 group, PBS+anti-mTOR group, and PBS+anti-HIF-1 α group. High-glucose and hypoxia-induced hREC in the PBS and Exo groups were respectively co-cultured with PBS and 100 μg/ml hUCMSC Exo. PBS+anti-mTOR group, PBS+anti-HIF-1 α group: 500 nmol/L mTOR inhibitor ADZ2014, 25 μmol/L HIF-1 α inhibitor YC-1 pretreatment for hREC 12 h, and then co-culture with PBS after High-glucose and hypoxia-induced. PBS+anti-miR126 group, Exo+anti-miR126 group: miR-126 LNA power inhibitor probe was transfected with high glucose, and co-cultured with PBS and hUCMSC Exo 6 h after transfection. Real-time polymerase chain reaction (qPCR) measured miRNA-126 expression levels in PBS, and Exo groups for 0, 8, 16 and 24 h. After 24 hof co-culture, the levels of mTOR and HIF-1 α in the cells of PBS and Exo groups were detected by immunofluorescence, Western blot and qPCR, respectively. Western blot, qPCR detection of VEGF-A expression levels in cells of the PBS+anti-mTOR and PBS+anti-HIF-1 α groups. The expression of VE GF-A, mTOR, and HIF-1 α mRNA was measured in cells of PBS+anti-miR126 group and Exo+anti-miR126 group by qPCR. Comparison between two groups was performed by t-test; one-way ANOVA was used for comparison between multiple groups. ResultsAt 0, 8, 16 and 24 h, the relative mRNA expression of miR-126 gradually increased in the Exo group (F=95.900, P<0.05). Compared with the PBS group, The mTOR, HIF-1 α protein (t=3.466, 6.804), mRNA in HRECs in the Exo group, VEGF-A mRNA expression (t=8.642, 7.897, 6.099) were all downregulated, the difference was statistically significant (P<0.05). The relative expression level of VEGF-Aprotein (t=3.337, 7.380) and mRNA (t=8.515, 10.400) was decreased in HRECs of the anti-mTOR+PBS group and anti-HIF-1 α+PBS group, differences were statistically significant (P<0.05). The relative expression of VEGF-A, mTOR, and HIF-1 α mRNA was significantly increased in the cells of the Exo+anti-miR126 group, the differences were all statistically significant (t=4.664, 6.136, 6.247; P<0.05). ConclusionsmiR-126 plays a role in regulating the effect of hUCMSCs exosomes on VEGF-A levels in high glucose-induced HRECs via mTOR-HIF-1 α pathway.

      Release date:2024-06-18 11:04 Export PDF Favorites Scan
    • Effect of Dexamethasone on Mammalian Target of Rapamycin Expression of Astrocytes in Hippocampus of Rats with Sepsis Associated Encephalopathy

      ObjectiveTo investigate the effect of dexamethasone on mammalian target of rapamycin (mTOR) expression of astrocytes in hippocampus of rats with sepsis associated encephalopathy (SAE). MethodsTotally, 90 cases of 30-day-old male Wistar rats were randomly divided into sham-operation group (n=10) and cecal ligation and puncture (CLP) group (n=80). Models of rats with sepsis were established by CLP. At 12 hours after CLP, if rats appeared lower neurobehavioral scores, abnormal electroencephalogram (EEG) and somatosensory evoked potential (SEP), they were diagnosed with SAE. And then, they were randomly divided into non-treated group and dexamethasone group. Rats in the dexamethasone group were injected with dexamethasone (1 mg/kg) via tail vein every other day for a total of 3 times. The same dose of saline was used in the non-treated group. The neurobehavioral score was measured, SEP and EEG were examined in the age of 40 days, and then the rats were killed and the hippocampus was taken. Expressions of mTOR protein were measured by Western blot. The glial fibrillary acidic protein (GFAP) and mTOR were detected by immunofluorescence assay, and the number of positive cells was calculated by image analysis system software. ResultsSix of 80 CLP rats died in 12 hours after operation, and 28 of 74 rats were diagnosed as SAE because they appeared lower neurobehavioral scores, abnormal EEG and SEP at 12 hours after CLP. The incidence of SAE was 37.84% (28/74). In the age of 40 days, compared with non-treated group, neurobehavioral score of rats in the dexamethasone group was low, the amount of alpha waves in EEG reduced, delta waves increased, the amplitude of P1 waves in SEP was decreased, and the latencies of P1 and N1 waves were prolonged (P<0.05). GFAP immunofluorescence staining showed astrocytic body and processes were small in the sham operation group. However, astrocytes in the non-treated group had large body and hypertrophic processes, and compared with the sham operation group, the number of these cells increased significantly (P<0.05). Astrocytic body and processes were small in the dexamethasone group compared with the non-treated group, and the number of cells also decreased (P<0.05). The mTOR positive astrocytes in the non-treated group were more than those in the sham operation group (P<0.05). But mTOR positive astrocytes in the dexamethasone group were fewer than those in the non-treated group (P<0.05). ConclusionsAstrocytes are activated in the hippocampus of rats with SAE. They show features of reactive hyperplasia, and the expression of mTOR is up-regulated, while dexamethasone can inhibit effects on these.

      Release date: Export PDF Favorites Scan
    • Progress of mTOR Signal Pathway in Chemo-Resistance of Gastric Cancer

      Objective To review the role of mTOR signal pathway in chemo-resistance of gastric cancer. Methods Domestic and international publications related mTOR signal pathway in chemo-resistance of gastric cancer in recent years were collected and reviewed. Results mTOR was a central signaling molecule of mTOR signal pathway, which regulated key cellular processes such as cell growth, cell proliferation, cell metabolism, and angiogenesis. Signaling molecules of mTOR signal pathway were overexpressed in gastric cancer. Moreover, mTOR signal pathway might play an important role in chemo-resistance of gastric cancer, and tumor stem cells were involved in it too. Conclusion As mTOR signal pathway plays an important role in chemo-resistance of gastric cancer, the combination of mTOR inhibitors and chemotherapy drugs may overcome the chemo-resistance of gastric cancer.

      Release date: Export PDF Favorites Scan
    • ADENOSINE-TRIPHOSPHATE PROMOTING REPAIR OF SPINAL CORD INJURY BY ACTIVATING MAMMALIAN TARGET OF RAPAMYCIN/SIGNAL TRANSDUCERS AND ACTIVATORS OF TRANSCRIPTION 3 SIGNAL PATHWAY IN RATS

      Objective To investigate the mechanism of adenosine-tri phosphate (ATP) activated mammal ian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) signal pathway in the physiology and pathology of spinal cord injury (SCI). Methods Ninety-six adult healthy female Sprague-Dawley rats were randomly divided into 4 groups (groups A, B, C and D, n=24). In groups A, B and C, the rats were made the SCI models at T8-10 levels by using a modified Allen’ s stall, and in group D, rats were given laminectomy without SCI. The rats were subjected to the administration of ATP (40 mg/kg) for 7 days in group A, to the administration of physiological sal ine (equal-volume) for 7 days in group B, to the administration of ATP (40 mg/kg) and rapamycin (3 mg/kg) for 7 days in group C, and to the administration of physiological sal ine (equal-volume) for 7 days in group D. Locomotor activity was evaluated using the Basso-Beattie-Bresnahan rating scale at the postoperative 1st, 2nd, 3rd, and 4th weeks. Then, the expressions of spinal cord cell marker [Nestin, neuron-specific enolase (NSE), gl ial fibrillary acidic protein (GFAP)] and the mTOR/STAT3 pathway factors (mTOR, STAT3) were detected at the postoperative 1st, 2nd, 3rd, and 4th weeks by immunohistochemistry analysis, Western blot assay, and real-time fluorescence PCR analysis. Results The BBB scores in group A showed a steady increase in the postoperative 1st-4th weeks and were significantly higher than those in groups B and C (P lt; 0.01), but were lower than that in group D (P lt; 0.01). Real-time fluorescence PCR results showed that the mRNA expressions of mTOR, STAT3, NSE of group A steadily increased, however, the Nestin mRNA expression gradually decreased in the postoperative 1st-4th weeks, which were all significantly higher than those of groups B, C, and D (P lt; 0.01). The mRNA expression of GFAP showed a steady increase in group A and was significantly less than those of groups B and C, but was higher than that of group D (P lt; 0.01). There were significant differences (Plt; 0.01) in all markers between groups B, C, and group D; there were significant differences in mTOR, P-mTOR, STAT3, and P-STAT3 mRNA between groups B and C at 1st-4th weeks (P lt; 0.05). The similar changes were found by Western blot assay. Conclusion ATP can activate the mTOR/STAT3 pathway to induce endogenic NSCs to prol iferate and differentiate into neurons in rats, it enhances the heal ing of SCI.

      Release date:2016-08-31 05:47 Export PDF Favorites Scan
    • 局灶性皮質發育不良的病理機制

      局灶性皮質發育不良(Focal cortical dysplasias, FCDs)是兒童難治性癲癇的常見病因,也是常需癲癇手術的原因。盡管近年來在細胞和分子生物上的進展,FCDs的病理機制仍不清楚。該研究旨在回顧FCDs的分子機制,系統地檢索FCDs組織、分子和電生理方面的文獻,以明確可能的治療靶點。哺乳動物雷帕霉素靶蛋白信號通路(mammalian target of rapamycin,mTOR)是一些FCDs結構和電生理紊亂的重要機制。其他的假說包括病毒感染、早產、頭部外傷和腦腫瘤。mTOR抑制劑(如:雷帕霉素)在動物和少量FCDs患者的隊列癲癇控制中取得陽性結果。近期研究在發育不良組織細胞的分子和電生理機制方面取得了令人鼓舞的進展。盡管mTOR抑制劑有良好的治療前景,但仍需大規模的隨機對照研究評估其有效性和不良反應,并且需要基礎研究發現新的分子水平診斷和治療方式。

      Release date:2016-11-28 01:27 Export PDF Favorites Scan
    • The expression of p-mammalian target of rapamycin in non-small-cell lung cancer and its prognostic significance

      Objective To study the p-mammalian target of rapamyein(p-roTOR)expression and its prognostic significance in non-small cell lung cancer(NSCLC).Methods Immunohistochemical staining of EnVision was applied to investigate the expression of p-roTOR in lung specimens from 59 cases with NSCLC and 10 cases with benign pulmonary diseases(3 pulmonary tuberculosises and 7 inflammatory pseudotumors 1.Results The positive rate of p-mTOR was 40.7% in NSCLC which was significantly higher than that in the benign pulmonary diseases(x =6.237,P=0.013).The expression of p-mTOR was closely correlated with age,sex and pTNM stage.Kaplan-Meire survival analysis revealed that the expression of p-mTOR was not correlated significantly with survival days(Log rank test P =0.055).Conclusion P-mTOR might be a biomark for differential diagnosis of malignant lung disease,but has poor prognostic value.

      Release date:2016-09-14 11:57 Export PDF Favorites Scan
    • 海馬苔蘚纖維出芽分子機制及在顳葉癲癇中的作用

      顳葉癲癇是難治性癲癇中最常見的類型,苔蘚纖維出芽(Mossy fiber sproutinggranular, MFS)是顳葉癲癇患者最特征性的病理變化,但其分子信號通路及在顳葉癲癇中的作用至今還未明確。現綜述近年有關MFS的信號通路及其在顳葉癲癇中作用。首先從顆粒細胞軸突出芽相關的信號通路進行闡述,主要包括細胞外信號調節激酶通路調節神經元胞體和軸突生長發育的作用,還有雷帕霉素靶蛋白轉導通路對癇性發作的影響以及調節細胞增殖、突觸重塑的作用。然后進一步闡述MFS到底促進還是抑制癲癇的發生以及與顳葉癲癇的因果關系。為顳葉癲癇的發生機制及治療提供新思路。

      Release date: Export PDF Favorites Scan
    • Effects of rapamycin and deferoxamin on wound healing after ischemia and hypoxia

      Objective To explore the effect and mechanism of rapamycin and deferoxamin on wound healing after ischemia and hypoxia. Methods The model of ischemia and hypoxia wound was made on the back of 40 SPF male adult Sprague Dawley rats, weight (300±20) g; they were randomly divided into 4 groups (n=10): the control group (group A), deferoxamine intervention group (group B), rapamycin intervention group (group C), and deferoxamine+rapamycin intervention group (group D). At 3, 6, and 9 days after model preparation, rats of groups A, B, C, and D were intra-peritoneally injected with normal saline, deferoxamin (10 mg/kg), rapamycin (3 mg/kg), deferoxamin (10 mg/kg)+rapamycin (3 mg/kg) respectively. The wound healing was observed and the healing time was recorded in each group; the wound healing tissue was harvested to test the mRNA and protein expressions of mammalian target of rapamycin (mTOR), hypoxia inducible factor 1α (HIF-1α), and vascular endothelial growth factor (VEGF) by real-time fluorescence quantitative PCR and Western blot at 2 days after wound healing. Results All rats survived to the end of the experiment, and wounds healed; the healing time of groups A, B, and D was significantly shorter than that of group C (P<0.05), but there was no significant difference between groups A, B, and D (P>0.05). Real-time fluorescence quantitative PCR showed that the expression of mTOR mRNA in groups C and D was significantly decreased when compared with the expressions in groups A and B (P<0.05); there was significant difference between groups A and B (P<0.05), but no significant difference between groups C and D (P>0.05). The expressions of HIF-1α mRNA and VEGF mRNA were signi-ficantly higher in groups B and D than groups A and C, and in group A than group C (P<0.05), but there was no signifi-cant difference between groups B and D (P>0.05). Western blot showed that the relative expressions of mTOR protein in groups C and D were significantly decreased when compared with the expressions in groups A and B (P<0.05), but there was no significant difference between groups C and D (P>0.05). The relative expressions of HIF-1α protein in groups A, B, and C were significantly increased when compared with expression in group D (P<0.05), but there was no significant difference between groups A, B, and C (P>0.05). The relative expression of VEGF protein were significantly lower in groups B, C, and D than group A, in group D than groups B and C, and in group C than group B (P<0.05). Conclusion Defe-roxamin can promote the wound healing of rats after ischemia and hypoxia, and the effect of rapamycin is opposite. It may be related to the existence of mTOR and HIF-1 signaling pathway in chronic ischemia-hypoxia wound.

      Release date:2017-06-15 10:04 Export PDF Favorites Scan
    • PROGRESS AND EXTENSIVE MEANING OF MAMMALIAN TARGET OF RAPAMYCIN INVOLVED INRESTORATION OF NERVOUS SYSTEM INJURY

      Objective To review the possible mechanisms of the mammal ian target of rapamycin (mTOR) in theneuronal restoration process after nervous system injury. Methods The related l iterature on mTOR in the restoration ofnervous system injury was extensively reviewed and comprehensively analyzed. Results mTOR can integrate signals fromextracellular stress and then plays a critical role in the regulation of various cell biological processes, thus contributes to therestoration of nervous system injury. Conclusion Regulating the activity of mTOR signaling pathway in different aspects cancontribute to the restoration of nervous system injury via different mechanisms, especially in the stress-induced brain injury.mTOR may be a potential target for neuronal restoration mechanism after nervous system injury.

      Release date:2016-08-31 04:23 Export PDF Favorites Scan
    2 pages Previous 1 2 Next

    Format

    Content

  • <table id="gigg0"></table>
  • 松坂南