Objective To study the adenovirus-mediated human bone morphogenetic protein-2 gene (Ad-hBMP-2)transferred to the intervertebral disc cells of the New Zealand rabbit in vitro. Methods The cells of New Zealand white rabbitswere isolated from their lumbar discs. The cells were grown in the monolayer and treated with an adenovirus encoding the LacZ gene (Ad-LacZ) and Ad-hBMP-2 (50,100, 150 MOI,multiplicity of infection) in the Dulbecco’s Modified Eagle Medium and the Ham’s F-12 Medium in vitro. Three days after the Ad-hBMP-2 treatment,the expression of hBMP-2 in the cells that had been infected by different dosesof MOI was determined by immunofluorescence and the Western blot analysis, and the expression was determined in the cells with the Ad-LacZ treatment in a dose of 150 MOI. Six days after the Ad-hBMP-2 treatment, mRNA was extracted for the reverse transcription polymerase chain reaction (RT-PCR) and the difference was detected between the control group and the culture group that was treated withAd-hBMP-2 in doses of 50, 100 and 150 MOI so that the expressions of aggrecan and collagen ⅡmRNA could be observed. Results The expression of hBMP-2 in the cells was gradually increased after the transfection in an increasing dose, which was observed by immunofluorescence and the Western blot analysis. At 6 days the aggrecan and collagen type Ⅱ mRNA expressions were up-regulated by Ad-hBMP-2 after the transfection at an increasing viral concentration in the dosedependent manner. Conclusion The results show that Ad-hBMP-2 can transfect the rabbit intervertebral disc cells in vitro with a high efficiency rate and the expression of hBMP-2 after theinfection is dose-dependent in the manner. AdhBMP-2 after transfection can up-regulate the expression of aggrecan and collagen Ⅱ mRNA at an increasing viral concentration.
Objective To determine whether the transforminggrowth factor β1 (TGF-β1) is a key regulatory molecule required for an increase or a balance of extracellular matrix (ECM) and DNA synthesis in the goat passaged nucleus pulposus (NP) cells. Methods The NP cells isolated from the goat intervertebral discs were cultured in vitro for a serial of passages and transfected with the replicationincompetent adenoviral vectors carrying the human TGF-β1 (hTGF-β1) or lacZ genes. Then, they were cultured in monolayer or alginate bead 3dimensional (3-D) systems for 10 days.The changes in the production and the molecular components of ECM that occurredin the NP cells transfected with Ad/hTGF-β1 or the controls were evaluated by Westernblot and absorbance of glycosaminoglycan (GAG)-Alcian Blue complexes. Differences of DNA synthesis in the variant cells and culture systems were assessed by fluorometric analysis of the DNA content. ResultsA quantitation in the variant culture systems indicated that in monolayers the NP cells at Passage 3 transfected with Ad/hTGF-β1 had a much higher cell viability and more DNA synthesis(P<0.05); however, in the alginate 3-D culture system, the NP cells transfected with Ad/hTGF-β1 did not have any significant difference from the controls(P>0.05). The Western blotting analysis ofthe protein sample isolated from the variant cells for TGF-β1, type Ⅱ collagen, and Aggrecan expression indicated that in the monolayers and alginate 3-D culture systems the NP cells at Passage 3 transfected with Ad/hTGF-β1 revealed much higher protein levels than the controls(P<0.05); whereas the type Ⅰcollagen content was much lower than the controls (P<0.05), but a significatly increased ratio of type Ⅱ/type Ⅰ collagen was found in both of the cell culture systems(P<0.05). The GAG quantification also showed a positive result in both the cell culture systems and the NP cells at Passage 3 transfected with Ad/hTGF-β1 had a much higher GAG content than the controls(P<0.05). Conclusion To a greaterextent, hTGF-β1 can play a key role in maintaining the phenotype of the NP cells and can still have an effect of the phenotypic modulation after a serial of the cell passages. The NP cells that are genetically manipulated to express hTGF-β1 have a promising effect on the restoration of the intervertebral disc defects. The NP cells transfected with Ad/hTGF-β1 cultured in the 3-D alginate bead systems can show a nearly native phenotype.
目的 探討重組人p53腺病毒(recombinant human p53 adenovirus, rAd-p53)在脊柱轉移瘤的治療中的近期療效。 方法 2006年6月-2009年8月,以經皮注射rAd-p53聯合放療及單獨放療方法治療肺鱗狀細胞癌來源脊柱轉移瘤患者各18例,通過比較兩組治療前后的腫瘤體積變化評價療效,觀察兩組治療后腫瘤細胞壞死率情況,檢測P53蛋白在癌組織中的表達以及血清中抗特異p53基因腺病毒抗體水平。 結果 聯合治療組療效評定有效率為66.7%,高于單獨放療組的27.8%,差異有統計學意義(Plt;0.05)。聯合治療組可見明顯腫瘤細胞壞死、P53蛋白表達陽性及血清中抗特異p53基因腺病毒抗體水平強陽性。 結論 rAd-p53基因治療能抑制腫瘤生長,聯合放療可彌補單一放療的不足,提高放療的敏感性,有效治療脊柱轉移瘤。
Objective To review the current concepts of gene therapy approachesmediated by adenovirus vectors for bone trauma and bone disease. Methods The recent literature concerned gene therapy mediated by adenovirus vectors was reviewed, which provides new insights into the treatments of bone trauma and bone disease. Results Adenovirus vectors was efficient, achieved high expression after transduction, and could transfer genes to both replicating and nonreplicating cells, such as osteoblasts, osteoclasts, fibroblasts, chondrocytes, bone marrow stromal cells, etc. Gene therapy mediated by adenovirus vectors achieved affirmative results in enhancing bone union and in curing bone diseases, such as osteoporosis and rheumatoid arthritis. Conclusion Gene therapy mediatedby adenovirus offers an exciting avenue for treatment of bone trauma and bone diseases.
Objective To evaluate the host immune reaction against adenovirus mediated human bone morphogenetic protein 2 (Adv-hBMP-2) gene therapy in repairof tibial defects. Methods Twelve goats were made 2.1 cm segmental defects in he tibial diaphysis and divided into 2 groups. AdvhBMP2 transfected marrow mesenchymal stem cells(MSCs) and untransfected MSCs were implanted into the defect sites of transfected group(n=7) and untransfected group (n=5), respectively. The defect repair was observed by X-ray films after 4, 8, 16 and 24 weeks of transplantation and cellular and humoral immune reactions to adenovirus were assayed before implantation and after implantation. Results More bony callus was found in the bone defects of transfected group. The healing rates were 6/7 in transfected group and 2/5 in untransfected group, respectively at 24 weeks after implantation. The mixed culture of lymphocytes and MSCs showed that the lymphocytes stimulation indexes (SI) increased 14 days after implantation, and there was significant difference between the transfected group (4.213±1.278) and the untransfected group(-0.310±0.147,Plt;0.05); SI decreased after 28 days, but there was no significant difference between the transfected group (2.544±0.957) and the untransfected group (3.104±0.644,Pgt;0.05). After 14, 28, 49, and 120 days of treatment, the titer values of neutralizing antibody against Adv-hBMP-2 (log0.1) were 2.359±0226, 2.297±0.200, 2.214±0.215 and 2.297±0.210 in transfected group, and -0.175±0.335, -0.419±0.171, 0±0.171 and 0.874±0.524 in untransfected group, being significant differences betweentwo groups(Plt;0.05). Conclusion Adenovirus mediated BMP-2gene therapy can cause cellular and humoral immune reactions against adenovirus, which can eliminate the influence of adenoviral genes and proteins within a certain period.
Objective To explore the feasibility of recombinant adeno-associated virus (rAAV) as a vector for the gene therapy of liver cancer. Methods The rAAV/enhance green fluorescein protein (EGFP) recombinant was prepared by the routine method of two plasmids cotransfection.Results The experiment showed that one 10cm plate could produce 107-108 infection unit recombinant by the method of two plasmids cotransfection, and the transduction of HepG2 cell was increased with the increase of infection dosage of rAAV. About 100 multiplicity of infection (MOI) AAV vector could make all the tumor cell light. Conclusion Liver cancer cell can be efficiently transduced by rAAV, and AAV vector may be a valuable vector for the gene therapy of liver cancer.
Objective To investigate the feasibility of rabbit synovial-derived mesenchymal stem cells (SMSCs) differentiating into fibrocartilage cells by the recombinant adenovirus vector mediated by bone morphogenetic protein 2/7 (BMP-2/7) genes in vitro. Methods SMSCs were isolated and purified from 3-month-old New Zealand white rabbits [male or female, weighing (2.1 ± 0.3) kg]; the morphology was observed; the cells were identified with immunocytological fluorescent staining, flow cytometry, and cell cycles. The adipogenic, osteogenic, and chondrogenic differentiations were detected. The recombinant plasmid of pAdTrack-BMP-2-internal ribosome entry site (IRES)-BMP-7 was constructed and then was used to infect SMSCs. The cell DNA content and the oncogenicity were tested to determine the safety. Then infected SMSCs were cultured in incomplete chondrogenic medium in vitro. Chondrogenic differentiation of infected SMSCs was detected by RT-PCR, immunofluorescent staining, and toluidine blue staining. Results SMSCs expressed surface markers of stem cells, and had multi-directional potential. The transfection efficiency of SMSCs infected by recombinant plasmid of pAdTrack-BMP-2-IRES-BMP-7 was about 70%. The safety results showed that infected SMSCs had normal double time, normal chromosome number, and normal DNA content and had no oncogenicity. At 21 days after cultured in incomplete chondrocyte medium, RT-PCR results showed SMSCs had increased expressions of collegan type I and collegan type II, particularly collegan type II; the expressions of RhoA and Sox-9 increased obviously. Immunofluorescent staining and toluidine blue staining showed differentiation of SMSCs into fibrocartilage cells. Conclusion It is safe to use pAdTrack-BMP-2-IRES-BMP-7 for infecting SMSCs. SMSCs infected by pAdTrack-BMP-2-IRES-BMP-7 can differentiate into fibrocartilage cells spontaneously in vitro.
Objective To construct a recombinant adenovirus vector pAdxsi-GFP-NELL1 that co-expressing green fluorescent protein (GFP) and homo sapiens NEL-l ike 1 (NELL1) protein (a protein bly expressed in neural tissue encoding epidermal growth factor l ike domain), to observe its expression by transfecting the recombinant adenovirus into rat bone marrow mesenchymal stem cells (BMSCs) so as to lay a foundation for further study on osteogenesis of NELL1 protein. Methods From pcDNA3.1-NELL1, NELL1 gene sequence was obtained, then NELL1 gene was subcloned into pShuttle-GFP-CMV (-)TEMP vector which was subsequently digested with enzyme and insterted into pAdxsi vector to package the recombinant adenovirus vector (pAdxsi-GFP-NELL1). After verified by enzyme cutting and gel electrophoresis, pAdxsi-GFPNELL1 was ampl ified in HEK293 cells and purified by CsCl2 gradient purification, titrated using 50% tissue culture infective dose (TCID50) assay. The rat BMSCs were cultured and identified by flow cytometry and directional induction, then were infected with adenoviruses (pAdxsi-GFP-NELL1 and pAdxsi-GFP). NELL1 expression was verified by RT-PCR and immunofluorescence; GFP gene expression was verified by the intensity of green fluorescence under fluorescence microscope. Cell counting kit-8 (CCK-8) was used for investigate the influence of vectors on the prol iferation of rat BMSCs. Results Recombinant adenoviral vector pAdxsi-GFP-NELL1, which encodes a fusion protein of human NELL1, was successfully constructed and ampl ified with titer of 1 × 1011 pfu/mL. The primary BMSCs were cultured and identified by flow cytometric analysis, osteogenic and adipogenic induction, then were used for adenoviral transfection efficiency and cell toxicity tests. An multipl icity of infection of 200 pfu/cell produced optimal effects in transfer efficiency without excessive cell death in vitro. Three days after transfection with 200 pfu/cell pAdxsi-GFP-NELL1 or pAdxsi-GFP, over 60% BMSCs showed green fluorescent by fluorescence microscopy. Imunofluorescence with NELL1 antibody also revealed high level expression of human NELL1 protein in red fluorescent in these GFP expressing cells. RT-PCR analysis confirmed that the exogenous expression of NELL1 upon transfection with pAdxsi-GFPNELL1 at 200 pfu/cell, whereas NELL1 remained undetectable in Ad-GFP-transfected rat BMSCs. The prol iferative property of primary rat BMSCs after adenoviral NELL1 transfection was assayed by CCK-8 in growth medium. Growth curve demonstratedno significant difference among BMSCs transfected with pAdxsi-GFP-NELL1, pAdxsi-GFP, and no treatment control at 7 days (P gt; 0.05). Conclusion Recombinant adenovirus vector pAdxsi-GFP-NELL1 can steady expressing both GFP and NELL1 protein after being transfected into rat BMSCs. It provides a useful tool to trace the expression of NELL1 and investigate its function in vitro and in vivo.
ObjectiveTo evaluate the therapeutic effect of liver transplantation (LT) combined with adenovirus-mediated delivery of herpes simplex virus thymidine kinase / ganciclovir (ADV-TK/GCV) in treatment of patients with hepatocellular carcinoma (HCC), so as to benefit more patients with HCC beyond the Milan criteria. MethodsThe clinicopathologic data of patients with HCC underwent LT by the author team since 2007 were collected and analyzed. The patients were assigned into simple LT group and LT+ADV-TK/GCV group. The 5-year cumulative overall survival rate and relapse free survival rate of all LT patients and the patients with LT beyond the Milan criteria by simple LT and LT+ADV-TK/GCV therapy were compared. Meanwhile, Cox regression was used to analyze the risk factors affecting long-term overall survival rate and relapse free survival rate of all patients with HCC after LT. ResultsA total of 216 patients eligible for inclusion were collected in this study, including 134 patients in the simple LT group and 82 patients in the LT+ADV-TK/GCV group, 162 of whom beyond the Milan criteria, including 101 patients underwent the simple LT and 61 patients underwent the LT+ADV-TK/GCV. There were no statistical differences in the baseline data between the simple LT and LT+ADV-TK/GCV in all patients and patients beyond the Milan criteria (P>0.05). There were no statistical differences in 5-year overall survival rate and relapse free survival rate of all patients with HCC (P>0.05). The 5-year cumulative overall survival rate of the LT+ADV-TK/GCV group was better than that of the simple LT group in the patients beyond the Milan criteria (χ2=4.11, P=0.047), but it was not found that the 5-year cumulative relapse free survival rate had statistical difference (27-month survival time as the critical value, P=0.46, P=0.06). Cox regression multivariate analysis results showed that the larger cumulative tumor diameter, the preoperative elevated serum alpha fetoprotein (>400 μg/L), later TNM stage, and without combination of ADV-TK/GCV therapy increased the probability of shorter overall survival of patients after LT; and the patient’s older age, the larger cumulative tumor diameter, and later TNM stage increased the probability of shorter relapse free survival after LT, and it was not found that the combination of ADV-TK/GCV therapy had an impact on the relapse free survival. ConclusionLT combined with ADV-TK/GCV therapy can obviously improve overall survival among patients beyond the Milan criteria, more patients with advanced HCC will be candidates for LT combined with ADV-TK/GCV therapy.
Objective To construct AWP1 (associated with protein kinase C related kinase 1) recombinant adenovirus as the tool of transferring the gene and investigate its expression and localization in human vascular endothelial cell ECV304. Methods Cloned AWP1 cDNA was inserted into the multiply clone sites (MCS) of plasmid pcDNA3 for adding flag tag, and the flag-AWP1 gene was subcloned into shuttle vector pAdTrack-CMV. After identified with restrictional enzymes, plasmid pAdTrack-flag-AWP1 was linearized by digestion with restriction endonuclease PmeⅠ, and subsequently cotransformed into E.coli BJ5183 cells with adenoviral backbone plasmid pAdEasy-1 to make homologous recombination. After linearized by PacⅠ, the homologous recombinant adenovirus plasmid transfected into 293 cells with Lipofectamine to pack recombinant adenovirus. After PCR assay of recombinant adenovirus granules, recombinant adenoviruses infected 293 cells repeatedly for obtaining the high-level adenoviruses solution. And then, the recombinant adenoviruses infected human ECV304 cells for observing the expression and localization of AWP1 under laser scanning confocal microscope (LSCM). Results PCR assay showed that recombinant adenovirus Ad-flag-AWP1 was obtained successfully; and ECV304 cells were infected high-efficiently by the homologous recombinant virus. Then, it was observed that flag-AWP1 protein expressed in ECV304 cells and distributed in the leading edges of the cell membrane. Conclusion The vectors of flag-AWP1 recombinant adenovirus are constructed, and the localization of AWP1 protein in ECV304 cells might show that AWP1 may be a potential role on the cell signal transduction.