The compressive strength of the original bone tissue was tested, based on the raw human thigh bone,bovine bone,pig bone and goat bone. The four different bone-like apatites were prepared by calcining the raw bones at 800℃ for 8 hours to remove organic components. The comparison of composition and structure of bone-like apatite from different bone sources was carried out with a composition and structure test. The results indicated that the compressive strength of goat bone was similar to that of human thigh bone, reached (135.00±7.84) MPa; Infrared spectrum (IR), X-ray diffraction (XRD) analysis results showed that the bone-like apatite from goat bone was much closer to the structure and phase composition of bone-like apatite of human bones. Inductively Coupled Plasma (ICP) test results showed that the content of trace elements of bone-like apatite from goat bone was closer to that of apatite of human bone. Energy Dispersive Spectrometer (EDS) results showed that the Ca/P value of bone-like apatite from goat bone was also close to that of human bone, ranged to 1.73±0.033. Scanning electron microscopy (SEM) patterns indicated that the macrographs of the apatite from human bone and that of goat bone were much similar to each other. Considering all the results above, it could be concluded that the goat bone-like apatite is much similar to that of human bone. It can be used as a potential natural bioceramic material in terms of material properties.
Objective To review the osteoimmunomodulatory effects and related mechanisms of inorganic biomaterials in the process of bone repair. Methods A wide range of relevant domestic and foreign literature was reviewed, the characteristics of various inorganic biomaterials in the process of bone repair were summarized, and the osteoimmunomodulatory mechanism in the process of bone repair was discussed. Results Immune cells play a very important role in the dynamic balance of bone tissue. Inorganic biomaterials can directly regulate the immune cells in the body by changing their surface roughness, surface wettability, and other physical and chemical properties, constructing a suitable immune microenvironment, and then realizing dynamic regulation of bone repair. Conclusion Inorganic biomaterials are a class of biomaterials that are widely used in bone repair. Fully understanding the role of inorganic biomaterials in immunomodulation during bone repair will help to design novel bone immunomodulatory scaffolds for bone repair.
Marine-derived biopolymers are excellent raw materials for biomedical products due to their abundant resources, good biocompatibility, low cost and other unique functions. Marine-derived biomaterials become a major branch of biomedical industry and possess promising development prospects since the industry is in line with the trend of " green industry and low-carbon economy”. Chitosan and alginates are the most commonly commercialized marine-derived biomaterials and have exhibited great potential in biomedical applications such as wound dressing, dental materials, antibacterial treatment, drug delivery and tissue engineering. This review focuses on the properties and applications of chitosan and alginates in biomedicine.
Thiry wistar rats were used and divided in 2 groups. A segment of 6mm was excised in the sciatic nerve which were then bridged with chitin and skelal muscle. at 4,8,12 weeks after operation, In the chitin group a satisfactory regeneration of nerve fibers was evident with electrophysiologic and histologic examinations, and HRP retrogade labelling evaluation. The possible mechanism of enhancing nerve regeneration of chitin was also discussed.
Objective To summarize the latest developments in silk protein fiber as biomaterials and their applications in tissue engineering. Methods Recent original literature on silk protein fiber as biomaterials were reviewed, illustrating the properties of silk protein fiber biomaterials. Results The silk protein fiber has the same functions of supporting the cell adhesion, differentiation and growth as native collagen, and is renewed as novel biomaterials with good biocompatibility, unique mechanical properties and is degradable over a longer time. Conclusion Silk protein-fiber can be used as asuitable matrix for three dimensional cell culture in tissue engineering. It has a great potential applications in other fields.
Objective To illustrate the effect and complication of orthopedic applications for biodegradable and absorbable internal fixation of fractures, and to indicate the existent problem and research aspect currently. Methods The recent literatures on orthopedic applications and study of biodegradable and absorbable internal fixation for fractures were reviewed. The effect of biodegradable materials on bone healing was summarized. Results It is good for the stability of fracture fixation and result of treeatment. The biodegradable and absorbable internal fixation fractures had no adverse effect on bone healing. Conclusion There will be more widespread application for biodegradable and absorbable materials in orthopedics, but the intensive research should be carried out to prevent its complication.
OBJECTIVE: From the point of view of material science, the methods of tissue repair and defect reconstruct were discussed, including mesenchymal stem cells (MSCs), growth factors, gene therapy and tissue engineered tissue. METHODS: The advances in tissue engineering technologies were introduced based on the recent literature. RESULTS: Tissue engineering should solve the design and preparation of molecular scaffold, tissue vascularization and dynamic culture of cell on the scaffolds in vitro. CONCLUSION: Biomaterials play an important role in the tissue engineering. They can be used as the matrices of MSCs, the delivery carrier of growth factor, the culture scaffold of cell in bioreactors and delivery carrier of gene encoding growth factors.
Artificial bone repair material is the best substitute for autologous bone transplantation. Bone repair materials are constantly being replaced and upgraded, which can be roughly divided into three generations: bioinert materials, bioactive materials, and smart materials. Research and development of bone repair materials with multiple biological activities, in vivo degradation property that perfectly fit for new bone formation, and ability of complete reconstruction of bone tissue in physiological state are the focus of future research.
Objective To summarize the developmental process of biomedical materials and regenerative medicine. Methods After reviewing and analyzing the literature concerned, we put forward the developmental direction of biomedical materials and regenerative medicine in the future. Results Biomedical materials developed from the first and second-generations to the third-generation in the 1990s. Regenerative medicine was able to help the injured tissues and organs to be regenerated by the use of the capability of healing themselves. This kind of medicine included the technologies of the stem cells and the cloning, the tissue engineering, the substitute tissues and organs, xenotransplantation and soon. Conclusion The third-generation biomaterials possess the following two properties: degradation and bioactivity; and they can help the body heal itself once implanted. Regenerative medicine is a rapidly advancing field that opens a new and exciting opportunity for completely revolutionary therapeutic modalities and technologies.
Objective To investigate cell cycle as a new tool to evaluate the biocompatibility of biomaterials.Methods The cell cycle and the expression of related genes were analyzed by the methods of immunocytochemistry, protein blotting, RT PCR and flow cytometry. Results The physical properteis, chemical properties and topological properities of biomaterials could not only influence cell cycle of the cells attached onto biomaterials but also affect the expression of related genes of target cells. Conclusion As an important extension of routine proliferation epxeriments, the study of cell cycle control will be great help for us to to study the cell group as an organic society. It revealed the balance between cell proliferation, cell differentiation and apotosis. It is suggested that the study of cell cycle control will play a key role in the research of tissue engineering.