Pulse waves contain rich physiological and pathological information of the human vascular system. The pulse wave diagnosis systems are very helpful for the clinical diagnosis and treatment of cardiovascular diseases. Accurate pulse waveform is necessary to evaluate the performances of the pulse wave equipment. However, it is difficult to obtain accurate pulse waveform due to several kinds of physiological and pathological conditions for testing and maintaining the pulse wave acquisition devices. A pulse wave generator was designed and implemented in the present study for this application. The blood flow in the vessel was simulated by modeling the cardiovascular system with windkessel model. Pulse waves can be generated based on the vascular systems with four kinds of resistance. Some functional models such as setting up noise types and signal noise ratio (SNR) values were also added in the designed generator. With the need of portability, high speed dynamic response, scalability and low power consumption for the system, field programmable gate array (FPGA) was chosen as hardware platform, and almost all the works, such as developing an algorithm for pulse waveform and interfacing with memory and liquid crystal display (LCD), were implemented under the flow of system on a programmable chip (SOPC) development. When users input in the key parameters through LCD and touch screen, the corresponding pulse wave will be displayed on the LCD and the desired pulse waveform can be accessed from the analog output channel as well. The structure of the designed pulse wave generator is simple and it can provide accurate solutions for studying and teaching pulse waves and the detection of the equipments for acquisition and diagnosis of pulse wave.
Tumor-treating fields (TTFields) is a novel treatment modality for malignant solid tumors, often employing electric field simulations to analyze the distribution of electric fields on the tumor under different parameters of TTFields. Due to the present difficulties and high costs associated with reproducing or implementing the simulation model construction techniques, this study used readily available open-source software tools to construct a highly accurate, easily implementable finite element simulation model for TTFields. The accuracy of the model is at a level of 1 mm3. Using this simulation model, the study carried out analyses of different factors, such as tissue electrical parameters and electrode configurations. The results show that factors influncing the distribution of the internal electric field of the tumor include changes in scalp and skull conductivity (with a maximum variation of 21.0% in the treatment field of the tumor), changes in tumor conductivity (with a maximum variation of 157.8% in the treatment field of the tumor), and different electrode positions and combinations (with a maximum variation of 74.2% in the treatment field of the tumor). In summary, the results of this study validate the feasibility and effectiveness of the proposed modeling method, which can provide an important reference for future simulation analyses of TTFields and clinical applications.
The pulse amplitude of fingertip volume could be improved by selecting the vascular dense area and applying appropriate pressure above it. In view of this phenomenon, this paper used Comsol Multiphysics 5.6 (Comsol, Sweden), the finite element analysis software of multi-physical field coupling simulation, to establish the vascular tissue model of a single small artery in fingertips for simulation. Three dimensional Navier-Stokes equations were solved by finite element method, the velocity field and pressure distribution of blood were calculated, and the deformation of blood vessels and surrounding tissues was analyzed. Based on Lambert Beer's Law, the influence of the longitudinal compression displacement of the lateral light surface region and the tissue model on the light intensity signal is investigated. The results show that the light intensity signal amplitude could be increased and its peak value could be reduced by selecting the area with dense blood vessels. Applying deep pressure to the tissue increased the amplitude and peak of the signal. It is expected that the simulation results combined with the previous experimental experience could provide a feasible scheme for improving the quality of finger volume pulse signal.
Finite element (FE) model of thorax with high biofidelity is one of the most important methods to investigate thoracic injury mechanism because of the absence of pediatric cadaver experiments. Based on the validated thorax finite element model, the FE models with equivalent muscles and real geometric muscles were developed respectively, and the effect of muscle biofidelity on thoracic injury was analyzed with reconstructing pediatric cadaver thorax impact experiments. The simulation results showed that the thoracic impact force, the maximum displacement and the maximum von-Mises stress of FE models with equivalent muscles were slightly greater than those from FE models with real geometric muscles, and the maximum principal strains of heart and lung were a little lower. And the correlation coefficient between cadaver corridor and FE model with real muscles was also greater than that between cadaver corridor and FE model with equivalent muscles. As a conclusion, the FE models with real geometric muscles can accurately reflect the biomechanical response of thorax during the impact.
The application of virtual simulation technology in the field of teaching has gradually received widespread attention both domestically and internationally. The National Virtual Simulation Experimental Teaching Project Shared Service Platform (iLAB-X) has emerged, providing a good platform and support for the teaching reform of experimental courses in universities. There are many difficulties in traditional experimental teaching of neurobiology. This article combines the teaching content of neurobiology experimental courses, fully explores and utilizes the virtual simulation resources of iLAB-X, and introduces the experimental teaching case design of the virtual real combination mode. It can enable students to have an immersive experience of arcane neurobiological experiments, help to understand and absorb theoretical knowledge, stimulate students’ interest and curiosity, and improve the teaching effectiveness of neurobiology experimental courses.
Artificial bone replacement has made an important contribution to safeguard human health and improve the quality of life. The application requirements of rapid prototyping technology based on reverse engineering in individualized artificial bone with individual differences are particularly urgent. This paper reviewed the current research and applications of rapid prototyping and reverse engineering in artificial bone. The research developments and the outlook of bone kinematics and dynamics simulation are also introduced.
目的 探討64層螺旋CT最小密度投影(MinIP)結合CT仿真內窺鏡(CTVE)對小兒支氣管異物的應用價值。 方法 對2010年6月-2012年1月臨床擬診為氣管支氣管異物的48例患兒行64層螺旋CT檢查同期行纖維支氣管鏡檢查,分析64層螺旋CT MinIP結合CTVE等多種重建技術對小兒支氣管異物顯示情況,并與纖維支氣管鏡檢查結果對照。 結果 MinIP結合CTVE技術診斷氣管支氣管異物28例,以纖維支氣管鏡為標準,敏感性93.33%,特異性94.44%,診斷準確率93.76%;兩種方法對支氣管異物的檢出率比較其差異無統計學意義(χ2=0.174,P>0.05)。 結論 MinIP結合CTVE技術是一種快速無創的檢出方法,大大提高了小兒氣管支氣管異物的敏感性、特異性和檢出率,對小兒氣管支氣管異物纖維支氣管鏡取出治療有重要價值。
This study aims to establish a multi-segment foot model which can be applied in dynamic gait simulation. The effectiveness and practicability of this model were verified afterwards by comparing simulation results with those of previous researches. Based on a novel hybrid dynamic gait simulator, bone models were imported into automatic dynamic analysis of mechanical systems (ADAMS). Then, they were combined with ligaments, fascia, muscle and plantar soft tissue that were developed in ADMAS. Multi-segment foot model was consisted of these parts. Experimental data of human gait along with muscle forces and tendon forces from literature were used to drive the model and perform gait simulation. Ground reaction forces and joints revolution angles obtained after simulation were compared with those of previous researches to validate this model. It showed that the model developed in this paper could be used in the dynamic gait simulation and would be able to be applied in the further research.
In this study, a closed-loop controller for chest compression which adjusts chest compression depth according to the coronary perfusion pressure (CPP) was proposed. An effective and personalized chest compression method for automatic mechanical compression devices was provided, and the traditional and uniform chest compression standard neglecting individual difference was improved. This study rebuilds Charles F. Babbs human circulation model with CPP simulation module and proposes a closed-loop controller based on a fuzzy control algorithm. The performance of the fuzzy controller was evaluated and compared to that of a traditional PID controller in computer simulation studies. The simulation results demonstrated that the fuzzy closed-loop controller produced shorter regulation time, fewer oscillations and smaller overshoot than those of the traditional PID controller and outperforms the traditional PID controller in CPP regulation and maintenance.
Pressure-support ventilation (PSV) is a form of important ventilation mode. Patient-ventilator synchrony of pressure support ventilation can be divided into inspiration-triggered and expiration-triggered ones. Whether the ventilator can track the patient's inspiration and expiration very well or not is an important evaluating item of the performance of the ventilator. The ventilator should response to the patient's inspiration effort on time and deliver the air flow to the patient under various conditions, such as different patient's lung types and inspiration effort, etc. Similarly, the ventilator should be able to response to the patient's expiration action, and to decrease the patient lung's internal pressure rapidly. Using the Active Servo Lung (ASL5000) respiratory simulation system, we evaluated the spontaneous breathing of PSV mode on E5, Servo i and Evital XL. The following parameters, the delay time before flow to the patient starts once the trigger variable signaling the start of inspiration, the lowest inspiratory airway pressure generated prior to the initiation of PSV, etc. were measured.