致癇網絡定義為癲癇放電產生和傳播過程中累及的腦區。基于顱內電極電生理數據的分析,文章綜述介紹了致癇網絡的歷史、方法和概念。在癲癇術前評估中,確定產生癲癇發作的腦區(如致癇區)是最重要的目標。較藥物難治性局灶性癲癇傳統的、局限性的視覺分析方法而言,致癇網絡作為一個模型已逐漸得到公認。該模型能更好地描述發作動態演變的復雜性、更真實地描述大腦致癇性的異常分布。致癇網絡概念在歷史上與立體腦電圖(SEEG)方法學的發展及隨后腦電信號定量分析相關。SEEG 有明確的發作期、發作前及發作間期放電模式,可以用信號分析方法對上述模式進行分析,如高頻振蕩定量分析或分析功能連接的改變。我們可以在皮層和皮層下腦區癲癇發生和傳播的過程中,依據 SEEG 數據分析得到大腦連接的顯著變化,這些變化與不同的發作癥狀學模式相關。發作間期特征就是致癇網絡產生異常電活動(發作間期棘波)及功能連接的改變。致癇網絡大尺度建模新方法的引入為更好地預測手術預后提供了新方法。就明確致癇性腦區的分布而言,致癇網絡的概念是一個關鍵的要素,這對癲癇手術尤為重要。
Citation: BartolomeiF, LagardeS, WendlingF, 鄭舒暢 譯, 秦兵 審. 癲癇網絡的定義:立體腦電圖和信號分析的貢獻. Journal of Epilepsy, 2018, 4(2): 135-149. doi: 10.7507/2096-0247.20180028 Copy
Copyright ? the editorial department of Journal of Epilepsy of West China Medical Publisher. All rights reserved
| 1. | Spencer SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia, 2002, 439(3): 219-227. |
| 2. | Wendling F, Chauvel P, Biraben A, et al. From intracerebral EEG signals to brain connectivity: identification of epileptogenic networks in partial epilepsy. Front Syst Neurosci, 2010, 4: 154. |
| 3. | Laufs H. Functional imaging of seizures and epilepsy: evolution from zones to networks. Curr Opin Neurol, 2012, 25(2): 194-200. |
| 4. | Guye M, Bartolomei F, Ranjeva JP. Imaging structural and functional connectivity: towards a unified definition of human brain organization? Curr Opin Neurol, 2008, 21(4): 393-403. |
| 5. | Stefan H, Lopes da Silva FH. Epileptic neuronal networks: methods of identification and clinical relevance. Front Neurol, 2013, 4: 8. |
| 6. | Bartolomei F, Guye M, Wendling F. Abnormal binding and disruption in large scale networks involved in human partial seizures. EPJ Nonlinear Biomed Phys, 2013, 1: 1-16. |
| 7. | Luders HO, Najm I, Nair D, et al. The epileptogenic zone: general principles. Epileptic Disord, 2006, 8(Suppl 2): S1-S9. |
| 8. | Panzica F, Varotto G, Rotondi F, et al. Identification of the epileptogenic zone from stereo-EEG signals: a connectivity-graph theory approach. Front Neurol, 2013, 4: 175. |
| 9. | Pittau F, Megevand P, Sheybani L, et al. Mapping epileptic activity: sources or networks for the clinicians? Front Neurol, 2014, 5: 218. |
| 10. | Bernhardt BC, Hong S, Bernasconi A, et al. Imaging structural and functional brain networks in temporal lobe epilepsy. Front Hum Neurosci, 2013, 7: 624. |
| 11. | Bettus G, Ranjeva JP, Wendling F, et al. Interictal functional connectivity of human epileptic networks assessed by intracerebral EEG and BOLD signal fluctuations. PLoS ONE, 2011, 6(5): e20071. |
| 12. | Bancaud J, Talairach J, Bonis A. La Stéréoencéphalographie dans l’épilepsie. Paris: Masson, 1965. |
| 13. | Mullin JP, Shriver M, Alomar S, et al. Is SEEG safe? A systematic review and meta-analysis of stereo-electroencephalography-related complications. Epilepsia, 2016, 57(3): 386-401. |
| 14. | Jehi L, Friedman D, Carlson C, et al. The evolution of epilepsy surgery between, 1991 and, 2011 in nine major epilepsy centers across the United States, Germany, and Australia. Epilepsia, 2015, 56(10): 1526-1533. |
| 15. | Talairach J, Bancaud J. Lesion, “irritative” zone and epileptogenic focus. Confin Neurol, 1966, 27(1): 91-94. |
| 16. | Rosenow F, Luders H. Presurgical evaluation of epilepsy. Brain, 2001, 124(Pt 9): 1683-1700. |
| 17. | Bartolomei F, Wendling F, Chauvel P. The concept of an epileptogenic network in human partial epilepsies. Neurochirurgie, 2008, 54(3): 174-184. |
| 18. | Bartolomei F, Khalil M, Wendling F, et al. Entorhinal cortex involvement in human mesial temporal lobe epilepsy: an electrophysiologic and volumetric study. Epilepsia, 2005, 46(5): 677-687. |
| 19. | Jirsa VK, Proix T, Perdikis D, et al. The virtual epileptic patient: Individualized whole-brain models of epilepsy spread. Neuroimage, 2017, 15(Pt B): 377-388. |
| 20. | Proix T, Bartolomei F, Chauvel P, et al. Permittivity coupling across brain regions determines seizure recruitment in partial epilepsy. J Neurosci, 2014, 34(45): 15009-15021. |
| 21. | Hutchings F, Han CE, Keller SS, et al. Predicting surgery targets in temporal lobe epilepsy through structural connectome based simulations. PLoS Comput Biol, 2015, 11(12): e1004642. |
| 22. | Guye M, Regis J, Tamura M, et al. The role of corticothalamic coupling in human temporal lobe epilepsy. Brain, 2006, 129(Pt 7): 1917-1928. |
| 23. | Stam CJ, van Straaten EC. The organization of physiological brain networks. Clin Neurophysiol, 2012, 123(6): 1067-1087. |
| 24. | Thornton R, Vulliemoz S, Rodionov R, et al. Epileptic networks in focal cortical dysplasia revealed using electroencephalography-functional magnetic resonance imaging. Ann Neurol, 2011, 70(5): 822-837. |
| 25. | Chaudhary UJ, Carmichael DW, Rodionov R, et al. Mapping preictal and ictal haemodynamic networks using video-electroencephalography and functional imaging. Brain, 2012, 135(Pt 12): 3645-3663. |
| 26. | Andrzejak RG, David O, Gnatkovsky V, et al. Localization of epileptogenic zone on pre-surgical intracranial EEG recordings: toward a validation of quantitative signal analysis approaches. Brain Topogr, 2015, 28(6): 832-837. |
| 27. | Bartolomei F, Chauvel P, Wendling F. Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. Brain, 2008, 131(Pt 7): 1818-1830. |
| 28. | David O, Blauwblomme T, Job AS, et al. Imaging the seizure onset zone with stereo-electroencephalography. Brain, 2011, 134(Pt 10): 2898-2911. |
| 29. | Stam CJ, Van Straaten EC, Van Dellen E, et al. The relation between structural and functional connectivity patterns in complex brain networks. Int J Psychophysiol, 2016, 103: 149-160. |
| 30. | Van Diessen E, Diederen SJ, Braun KP, et al. Functional and structural brain networks in epilepsy: what have we learned? Epilepsia, 2013, 54(11): 1855-1865. |
| 31. | Guye M, Bettus G, Bartolomei F, et al. Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks. Magma, 2010, 23(5-6): 409-421. |
| 32. | Schoffelen JM, Gross J. Source connectivity analysis with MEG and EEG. Hum Brain Mapp, 2009, 30(6): 1857-1865. |
| 33. | Englot DJ, Hinkley LB, Kort NS, et al. Global and regional functional connectivity maps of neural oscillations in focal epilepsy. Brain, 2015, 138(Pt 8): 2249-2262. |
| 34. | Coito A, Genetti M, Pittau F, et al. Altered directed functional connectivity in temporal lobe epilepsy in the absence of interictal spikes: a high density EEG study. Epilepsia, 2016, 57(3): 402-411. |
| 35. | Hassan M, Merlet I, Mheich A, et al. Identification of interictal epileptic networks from dense-EEG. Brain Topogr, 2017, 30(1): 60-76. |
| 36. | Malinowska U, Badier JM, Gavaret M, et al. Interictal networks in magnetoencephalography. Hum Brain Mapp, 2014, 35(6): 2789-2805. |
| 37. | Constable RT, Scheinost D, Finn ES, et al. Potential use and challenges of functional connectivity mapping in intractable epilepsy. Front Neurol, 2013, 4: 39. |
| 38. | Centeno M, Carmichael DW. Network connectivity in epilepsy: resting state fMRI and EEG-fMRI contributions. Front Neurol, 2014, 5: 93. |
| 39. | Pittau F, Vulliemoz S. Functional brain networks in epilepsy: recent advances in noninvasive mapping. Curr Opin Neurol, 2015, 28(4): 338-343. |
| 40. | Tracy JI, Doucet GE. Resting-state functional connectivity in epilepsy: growing relevance for clinical decision making. Curr Opin Neurol, 2015, 28(2): 158-165. |
| 41. | Wendling F, Ansari-Asl K, Bartolomei F, et al. From EEG signals to brain connectivity: a model-based evaluation of interdependence measures. J Neurosci Methods, 2009, 30, 183(1): 9-18. |
| 42. | Brazier MA. Electrical activity recorded simultaneously from the scalp and deep structures of the human brain. A computer study of their relationships. J Nerv Ment Dis, 1968, 147(1): 31-39. |
| 43. | Gotman J, Gloor P, Quesney LF, et al. Correlations between EEG changes induced by diazepam and the localization of epileptic spikes and seizures. Electroencephalogr Clin Neurophysiol, 1982, 54(6): 614-621. |
| 44. | Lachaux JP, Lutz A, Rudrauf D, et al. Estimating the time-course of coherence between single-trial brain signals: an introduction to wavelet coherence. Neurophysiol Clin, 2002, 32(3): 157-174. |
| 45. | Wang HE, Benar CG, Quilichini PP, et al. A systematic framework for functional connectivity measures. Front Neurosci, 2014, 8: 405. |
| 46. | Bartolomei F, Wendling F, Bellanger J, et al. Neural networks involved in temporal lobe epilepsy. Clin Neurophysiol, 2001, 112(9): 1746-1760. |
| 47. | Wendling F, Bartolomei F. Modeling EEG signals and interpreting measures of relationship during temporal-lobe seizures: an approach to the study of epileptogenic networks. Epileptic Disord, 2001, 3(Special Issue): 67-78. |
| 48. | Meeren HK, Pijn JP, Van Luijtelaar EL, et al. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci, 2002, 22(4): 1480-1495. |
| 49. | Granger C. Some recent developments in a concept of causality. J Econ, 1998, 39: 199-211. |
| 50. | Brovelli A, Ding M, Ledberg A, et al. Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc Natl Acad Sci USA, 2004, 101(26): 9849-9854. |
| 51. | Kaminski MJ, Blinowska KJ. A new method of the description of the information flow in the brain structures. Biol Cybern, 1991, 65(3): 203-210. |
| 52. | Franaszczuk PJ, Bergey GK. Application of the directed transfer function method to mesial and lateral onset temporal lobe seizures. Brain Topogr, 1998, 11(1): 13-21. |
| 53. | Dai Y, Zhang W, Dickens DL, et al. Source connectivity analysis from MEG and its application to epilepsy source localization. Brain Topogr, 2012, 25(2): 157-166. |
| 54. | Korzeniewska A, Crainiceanu CM, Kus R, et al. Dynamics of event-related causality in brain electrical activity. Hum Brain Mapp, 2008, 29(10): 1170-1192. |
| 55. | Baccala LA, Sameshima K. Partial directed coherence: a new concept in neural structure determination. Biol Cybern, 2001, 84(6): 463-474. |
| 56. | Li YH, Ye XL, Liu QQ, et al. Localization of epileptogenic zone based on graph analysis of stereo-EEG. Epilepsy Res, 2016, 128: 149-157. |
| 57. | Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci, 2009, 10(3): 186-198. |
| 58. | Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature, 1998, 393(6684): 440-442. |
| 59. | Vecchio F, Miraglia F, Vollono C, et al. Pre-seizure architecture of the local connections of the epileptic focus examined via graph-theory. Clin Neurophysiol, 2016, 127(10): 3252-3258. |
| 60. | Ponten SC, Bartolomei F, Stam CJ. Small-world networks and epilepsy: Graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol, 2007, 118(4): 918-927. |
| 61. | Kramer M, Cash S. Epilepsy as a disorder of cortical network organization. Neuroscientist, 2012, 18(4): 360-372. |
| 62. | Bartolomei F, Bettus G, Stam CJ, et al. Interictal network properties in mesial temporal lobe epilepsy: a graph theoretical study from intracerebral recordings. Clin Neurophysiol, 2013, 124(12): 2345-2353. |
| 63. | Wilke C, Worrell G, He B. Graph analysis of epileptogenic networks in human partial epilepsy. Epilepsia, 2011, 52(1): 84-93. |
| 64. | Van Mierlo P, Carrette E, Hallez H, et al. Ictal-onset localization through connectivity analysis of intracranial EEG signals in patients with refractory epilepsy. Epilepsia, 2013, 54(8): 1409-1418. |
| 65. | Courtens S, Colombet B, Trebuchon A, et al. Graph measures of node strength for characterizing preictal synchrony in partial epilepsy. Brain Connect, 2016, 6(7): 530-539. |
| 66. | Amini L, Jutten C, Achard S, et al. Directed differential connectivity graph of interictal epileptiform discharges. IEEE Trans Biomed Eng, 2011, 58(4): 884-893. |
| 67. | Power JD, Schlaggar BL, Petersen SE. Studying brain organization via spontaneous fMRI signal. Neuron, 2014, 84(4): 681-696. |
| 68. | Lagarde S, Bonini F, McGonigal A, et al. Seizure-onset patterns in focal cortical dysplasia and neurodevelopmental tumors: Relationship with surgical prognosis and neuropathologic subtypes. Epilepsia, 2016, 57(9): 1426-1435. |
| 69. | Perucca P, Dubeau F, Gotman J. Intracranial electroenc-ephalo-graphic seizure-onset patterns: effect of underlying pathology. Brain, 2014, 137(Pt 1): 183-196. |
| 70. | Alarcon G, Binnie CD, Elwes RD, et al. Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy. Electroencephalogr Clin Neurophysiol, 1995, 94(5): 326-337. |
| 71. | Gnatkovsky V, De Curtis M, Pastori C, et al. Biomarkers of epileptogenic zone defined by quantified stereo-EEG analysis. Epilepsia, 2014, 55(2): 296-305. |
| 72. | Marchi A, Bonini F, Lagarde S, et al. Occipital and occipital “plus” epilepsies: a study of involved epileptogenic networks through SEEG quantification. Epilepsy Behav, 2016, 62: 104-114. |
| 73. | Bartolomei F, Cosandier-Rimele D, McGonigal A, et al. From mesial temporal lobe to temporoperisylvian seizures: a quantified study of temporal lobe seizure networks. Epilepsia, 2010, 51(10): 2147-2158. |
| 74. | Aubert S, Bonini F, Curot J, et al. The role of sub-hippocampal versus hippocampal regions in bitemporal lobe epilepsies. Clin Neurophysiol, 2016, 127(9): 2992-2999. |
| 75. | Bartolomei F, Gavaret M, Hewett R, et al. Neural networks underlying parietal lobe seizures: a quantified study from intracerebral recordings. Epilepsy Res, 2011, 93(2-3): 164-176. |
| 76. | Bonini F, McGonigal A, Wendling F, et al. Epileptogenic networks in seizures arising from motor systems. Epilepsy Res, 2013, 106(1-2): 92-102. |
| 77. | Job AS, De Palma L, Principe A, et al. The pivotal role of the supplementary motor area in startle epilepsy as demonstrated by SEEG epileptogenicity maps. Epilepsia, 2014, 55(8): e85-e88. |
| 78. | Aubert S, Wendling F, Regis J, et al. Local and remote epileptogenicity in focal cortical dysplasias and neuro-developmental tumours. Brain, 2009, 132(Pt 11): 3072-3086. |
| 79. | Sevy A, Gavaret M, Trebuchon A, et al. Beyond the lesion: the epileptogenic networks around cavernous angiomas. Epilepsy Res, 2014, 108(4): 701-708. |
| 80. | Brazier MA. Spread of seizure discharges in epilepsy: anatomical and electrophysiological considerations. Exp Neurol, 1972, 36(2): 263-272. |
| 81. | Gotman J, Levtova V. Amygdala-hippocampus relationships in temporal lobe seizures: a phase coherence study. Epilepsy Res, 1996, 25(1): 51-57. |
| 82. | Le Van QM, Adam C, Baulac M, et al. Nonlinear interdependencies of EEG signals in human intracranially recorded temporal lobe seizures. Brain Res, 1998, 792(1): 24-40. |
| 83. | Bartolomei F, Wendling F, Vignal J, et al. Seizures of temporal lobe epilepsy: identification of subtypes by coherence analysis using stereo-electro-encephalography. Clin Neurophysiol, 1999, 110(10): 1741-1754. |
| 84. | Schindler K, Leung H, Elger CE, et al. Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain, 2007, 130(Pt 1): 65-77. |
| 85. | Jiruska P, De Curtis M, Jefferys JG, et al. Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol, 2013, 591(4): 787-797. |
| 86. | Varotto G, Tassi L, Franceschetti S, et al. Epileptogenic networks of type II focal cortical dysplasia: a stereo-EEG study. NeuroImage, 2012, 61(3): 591-598. |
| 87. | Wendling F, Bartolomei F, Bellanger JJ, et al. Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset. Brain, 2003, 126(Pt 6): 1449-1459. |
| 88. | Arthuis M, Valton L, Regis J, et al. Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization. Brain, 2009, 132(Pt 8): 2091-101. |
| 89. | Kramer MA, Kolaczyk ED, Kirsch HE. Emergent network topology at seizure onset in humans. Epilepsy Res, 2008, 79(2-3): 173-186. |
| 90. | Evangelista E, Benar C, Bonini F, et al. Does the thalamo-cortical synchrony play a role in seizure termination? Front Neurol, 2015, 6: 192. |
| 91. | Bartolomei F, Chauvel P, Wendling F. Spatio-temporal dynamics of neuronal networks in partial epilepsy. Rev Neurol (Paris), 2005, 161(8-9): 767-780. |
| 92. | Bartolomei F, Wendling F, Regis J, et al. Pre-ictal synchronicity in limbic networks of mesial temporal lobe epilepsy. Epilepsy Res, 2004, 61(1-3): 89-104. |
| 93. | Wendling F, Bartolomei F, Bellanger JJ, et al. Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG. Clin Neurophysiol, 2001, 112(7): 1201-1218. |
| 94. | Bertram EH, Mangan PS, Zhang D, et al. The midline thalamus: alterations and a potential role in limbic epilepsy. Epilepsia, 2001, 42(8): 967-978. |
| 95. | Ponten SC, Bartolomei F, Stam CJ. Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol, 2007, 118(4): 918-927. |
| 96. | Schindler KA, Bialonski S, Horstmann MT, et al. Evolving functional network properties and synchronizability during human epileptic seizures. Chaos, 2008, 18(3): 033119. |
| 97. | Bancaud J, Talairach J. Clinical semiology of frontal lobe seizures. Adv Neurol, 1992, 57: 3-58. |
| 98. | Bassett DS, Bullmore ET, Meyer-Lindenberg A, et al. Cognitive fitness of cost-efficient brain functional networks. Proc Natl Acad Sci USA, 2009, 106(28): 11747-11752. |
| 99. | Bartolomei F, Barbeau E, Gavaret M, et al. Cortical stimulation study of the role of rhinal cortex in deja vu and reminiscence of memories. Neurology, 2004, 63(5): 858-864. |
| 100. | Barbeau E, Wendling F, Regis J, et al. Recollection of vivid memories after perirhinal region stimulations: synchronization in the theta range of spatially distributed brain areas. Neuropsychologia, 2005, 43(9): 1329-1337. |
| 101. | Bartolomei F, Barbeau EJ, Nguyen T, et al. Rhinal-hippocampal interactions during deja vu. Clin Neurophysiol, 2012, 123(3): 489-495. |
| 102. | Bartolomei F, Wendling F, Vignal JP, et al. Neural networks underlying epileptic humming. Epilepsia, 2002, 43(9): 1001-1012. |
| 103. | Bartolomei F, Naccache L. The global workspace (GW) theory of consciousness and epilepsy. Behav Neurol, 2011, 24(1): 67-74. |
| 104. | Dehaene S, Naccache L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition, 2001, 79(1-2): 1-37. |
| 105. | Lambert I, Arthuis M, McGonigal A, et al. Alteration of global workspace during loss of consciousness: a study of parietal seizures. Epilepsia, 2012, 53(12): 2104-2110. |
| 106. | Bonini F, Lambert I, Wendling F, et al. Altered synchrony and loss of consciousness during frontal lobe seizures. Clin Neurophysiol, 2016, 127(2): 1170-5. |
| 107. | Bartolomei F, Trebuchon A, Gavaret M, et al. Acute alteration of emotional behaviour in epileptic seizures is related to transient desynchrony in emotion-regulation networks. Clin Neurophysiol, 2005, 116(10): 2473-2479. |
| 108. | Bartolomei F, Trebuchon A, Bonini F, et al. What is the concordance between the seizure onset zone and the irritative zone? A SEEG quantified study Clin Neurophysiol, 2016, 127(2): 1157-1162. |
| 109. | Alarcon G, Guy CN, Binnie CD, et al. Intracerebral propagation of interictal activity in partial epilepsy: implications for source localisation. J Neurol Neurosurg Psychiatry, 1994, 57(4): 435-449. |
| 110. | Bourien J, Bartolomei F, Bellanger JJ, et al. A method to identify reproducible subsets of co-activated structures during interictal spikes. Application to intracerebral EEG in temporal lobe epilepsy. Clin Neurophysiol, 2005, 116(2): 443-455. |
| 111. | Badier JM, Bartolomei F, Chauvel P, et al. Magnetic source imaging in posterior cortex epilepsies. Brain Topogr, 2015, 28(1): 162-171. |
| 112. | Schevon CA, Cappell J, Emerson R, et al. Cortical abnormalities in epilepsy revealed by local EEG synchrony. NeuroImage, 2007, 35(1): 140-148. |
| 113. | Ortega GJ, Menendez De La Prida L, Sola RG, et al. Synchronization clusters of interictal activity in the lateral temporal cortex of epileptic patients: intraoperative electrocorticographic analysis. Epilepsia, 2008, 49(2): 269-280. |
| 114. | Warren CP, Hu S, Stead M, et al. Synchrony in normal and focal epileptic brain: the seizure onset zone is functionally disconnected. J Neurophysiol, 2010, 104(6): 3530-3539. |
| 115. | Mormann F, Lehnertz K, David P, et al. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D, 2000, 144: 358-369. |
| 116. | Bettus G, Wendling F, Guye M, et al. Enhanced EEG functional connectivity in mesial temporal lobe epilepsy. Epilepsy Res, 2008, 81(1): 58-68. |
| 117. | Blumenfeld H, Rivera M, Vasquez JG, et al. Neocortical and thalamic spread of amygdala kindled seizures. Epilepsia, 2007, 48(2): 254-262. |
| 118. | Bartolomei F, Bonini F, Vidal E, et al. How does vagal nerve stimulation (VNS) change EEG brain functional connectivity? Epilepsy Res, 2016, 126: 141-146. |
| 119. | Chavez M, Valencia M, Navarro V, et al. Functional modularity of background activities in normal and epileptic brain networks. Phys Rev Lett, 2010, 104(11): 118701. |
| 120. | Horstmann MT, Bialonski S, Noennig N, et al. State dependent properties of epileptic brain networks: comparative graph-theoretical analyses of simultaneously recorded EEG and MEG. Clin Neurophysiol, 2010, 121(2): 172-185. |
| 121. | Jayakar P, Gotman J, Harvey AS, et al. Diagnostic utility of invasive EEG for epilepsy surgery: indications, modalities, and techniques. Epilepsia, 2016, 57(11): 1735-1747. |
| 122. | Wendling F, Benquet P, Bartolomei F, et al. Computational models of epileptiform activity. J Neurosci Methods, 2016, 260: 233-251. |
| 123. | Proix T, Bartolomei F, Guye M, et al. Individual structural connectivity defines propagation networks in partial epilepsy. Brain, 2017, 140(3): 641-654. |
- 1. Spencer SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia, 2002, 439(3): 219-227.
- 2. Wendling F, Chauvel P, Biraben A, et al. From intracerebral EEG signals to brain connectivity: identification of epileptogenic networks in partial epilepsy. Front Syst Neurosci, 2010, 4: 154.
- 3. Laufs H. Functional imaging of seizures and epilepsy: evolution from zones to networks. Curr Opin Neurol, 2012, 25(2): 194-200.
- 4. Guye M, Bartolomei F, Ranjeva JP. Imaging structural and functional connectivity: towards a unified definition of human brain organization? Curr Opin Neurol, 2008, 21(4): 393-403.
- 5. Stefan H, Lopes da Silva FH. Epileptic neuronal networks: methods of identification and clinical relevance. Front Neurol, 2013, 4: 8.
- 6. Bartolomei F, Guye M, Wendling F. Abnormal binding and disruption in large scale networks involved in human partial seizures. EPJ Nonlinear Biomed Phys, 2013, 1: 1-16.
- 7. Luders HO, Najm I, Nair D, et al. The epileptogenic zone: general principles. Epileptic Disord, 2006, 8(Suppl 2): S1-S9.
- 8. Panzica F, Varotto G, Rotondi F, et al. Identification of the epileptogenic zone from stereo-EEG signals: a connectivity-graph theory approach. Front Neurol, 2013, 4: 175.
- 9. Pittau F, Megevand P, Sheybani L, et al. Mapping epileptic activity: sources or networks for the clinicians? Front Neurol, 2014, 5: 218.
- 10. Bernhardt BC, Hong S, Bernasconi A, et al. Imaging structural and functional brain networks in temporal lobe epilepsy. Front Hum Neurosci, 2013, 7: 624.
- 11. Bettus G, Ranjeva JP, Wendling F, et al. Interictal functional connectivity of human epileptic networks assessed by intracerebral EEG and BOLD signal fluctuations. PLoS ONE, 2011, 6(5): e20071.
- 12. Bancaud J, Talairach J, Bonis A. La Stéréoencéphalographie dans l’épilepsie. Paris: Masson, 1965.
- 13. Mullin JP, Shriver M, Alomar S, et al. Is SEEG safe? A systematic review and meta-analysis of stereo-electroencephalography-related complications. Epilepsia, 2016, 57(3): 386-401.
- 14. Jehi L, Friedman D, Carlson C, et al. The evolution of epilepsy surgery between, 1991 and, 2011 in nine major epilepsy centers across the United States, Germany, and Australia. Epilepsia, 2015, 56(10): 1526-1533.
- 15. Talairach J, Bancaud J. Lesion, “irritative” zone and epileptogenic focus. Confin Neurol, 1966, 27(1): 91-94.
- 16. Rosenow F, Luders H. Presurgical evaluation of epilepsy. Brain, 2001, 124(Pt 9): 1683-1700.
- 17. Bartolomei F, Wendling F, Chauvel P. The concept of an epileptogenic network in human partial epilepsies. Neurochirurgie, 2008, 54(3): 174-184.
- 18. Bartolomei F, Khalil M, Wendling F, et al. Entorhinal cortex involvement in human mesial temporal lobe epilepsy: an electrophysiologic and volumetric study. Epilepsia, 2005, 46(5): 677-687.
- 19. Jirsa VK, Proix T, Perdikis D, et al. The virtual epileptic patient: Individualized whole-brain models of epilepsy spread. Neuroimage, 2017, 15(Pt B): 377-388.
- 20. Proix T, Bartolomei F, Chauvel P, et al. Permittivity coupling across brain regions determines seizure recruitment in partial epilepsy. J Neurosci, 2014, 34(45): 15009-15021.
- 21. Hutchings F, Han CE, Keller SS, et al. Predicting surgery targets in temporal lobe epilepsy through structural connectome based simulations. PLoS Comput Biol, 2015, 11(12): e1004642.
- 22. Guye M, Regis J, Tamura M, et al. The role of corticothalamic coupling in human temporal lobe epilepsy. Brain, 2006, 129(Pt 7): 1917-1928.
- 23. Stam CJ, van Straaten EC. The organization of physiological brain networks. Clin Neurophysiol, 2012, 123(6): 1067-1087.
- 24. Thornton R, Vulliemoz S, Rodionov R, et al. Epileptic networks in focal cortical dysplasia revealed using electroencephalography-functional magnetic resonance imaging. Ann Neurol, 2011, 70(5): 822-837.
- 25. Chaudhary UJ, Carmichael DW, Rodionov R, et al. Mapping preictal and ictal haemodynamic networks using video-electroencephalography and functional imaging. Brain, 2012, 135(Pt 12): 3645-3663.
- 26. Andrzejak RG, David O, Gnatkovsky V, et al. Localization of epileptogenic zone on pre-surgical intracranial EEG recordings: toward a validation of quantitative signal analysis approaches. Brain Topogr, 2015, 28(6): 832-837.
- 27. Bartolomei F, Chauvel P, Wendling F. Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. Brain, 2008, 131(Pt 7): 1818-1830.
- 28. David O, Blauwblomme T, Job AS, et al. Imaging the seizure onset zone with stereo-electroencephalography. Brain, 2011, 134(Pt 10): 2898-2911.
- 29. Stam CJ, Van Straaten EC, Van Dellen E, et al. The relation between structural and functional connectivity patterns in complex brain networks. Int J Psychophysiol, 2016, 103: 149-160.
- 30. Van Diessen E, Diederen SJ, Braun KP, et al. Functional and structural brain networks in epilepsy: what have we learned? Epilepsia, 2013, 54(11): 1855-1865.
- 31. Guye M, Bettus G, Bartolomei F, et al. Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks. Magma, 2010, 23(5-6): 409-421.
- 32. Schoffelen JM, Gross J. Source connectivity analysis with MEG and EEG. Hum Brain Mapp, 2009, 30(6): 1857-1865.
- 33. Englot DJ, Hinkley LB, Kort NS, et al. Global and regional functional connectivity maps of neural oscillations in focal epilepsy. Brain, 2015, 138(Pt 8): 2249-2262.
- 34. Coito A, Genetti M, Pittau F, et al. Altered directed functional connectivity in temporal lobe epilepsy in the absence of interictal spikes: a high density EEG study. Epilepsia, 2016, 57(3): 402-411.
- 35. Hassan M, Merlet I, Mheich A, et al. Identification of interictal epileptic networks from dense-EEG. Brain Topogr, 2017, 30(1): 60-76.
- 36. Malinowska U, Badier JM, Gavaret M, et al. Interictal networks in magnetoencephalography. Hum Brain Mapp, 2014, 35(6): 2789-2805.
- 37. Constable RT, Scheinost D, Finn ES, et al. Potential use and challenges of functional connectivity mapping in intractable epilepsy. Front Neurol, 2013, 4: 39.
- 38. Centeno M, Carmichael DW. Network connectivity in epilepsy: resting state fMRI and EEG-fMRI contributions. Front Neurol, 2014, 5: 93.
- 39. Pittau F, Vulliemoz S. Functional brain networks in epilepsy: recent advances in noninvasive mapping. Curr Opin Neurol, 2015, 28(4): 338-343.
- 40. Tracy JI, Doucet GE. Resting-state functional connectivity in epilepsy: growing relevance for clinical decision making. Curr Opin Neurol, 2015, 28(2): 158-165.
- 41. Wendling F, Ansari-Asl K, Bartolomei F, et al. From EEG signals to brain connectivity: a model-based evaluation of interdependence measures. J Neurosci Methods, 2009, 30, 183(1): 9-18.
- 42. Brazier MA. Electrical activity recorded simultaneously from the scalp and deep structures of the human brain. A computer study of their relationships. J Nerv Ment Dis, 1968, 147(1): 31-39.
- 43. Gotman J, Gloor P, Quesney LF, et al. Correlations between EEG changes induced by diazepam and the localization of epileptic spikes and seizures. Electroencephalogr Clin Neurophysiol, 1982, 54(6): 614-621.
- 44. Lachaux JP, Lutz A, Rudrauf D, et al. Estimating the time-course of coherence between single-trial brain signals: an introduction to wavelet coherence. Neurophysiol Clin, 2002, 32(3): 157-174.
- 45. Wang HE, Benar CG, Quilichini PP, et al. A systematic framework for functional connectivity measures. Front Neurosci, 2014, 8: 405.
- 46. Bartolomei F, Wendling F, Bellanger J, et al. Neural networks involved in temporal lobe epilepsy. Clin Neurophysiol, 2001, 112(9): 1746-1760.
- 47. Wendling F, Bartolomei F. Modeling EEG signals and interpreting measures of relationship during temporal-lobe seizures: an approach to the study of epileptogenic networks. Epileptic Disord, 2001, 3(Special Issue): 67-78.
- 48. Meeren HK, Pijn JP, Van Luijtelaar EL, et al. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci, 2002, 22(4): 1480-1495.
- 49. Granger C. Some recent developments in a concept of causality. J Econ, 1998, 39: 199-211.
- 50. Brovelli A, Ding M, Ledberg A, et al. Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc Natl Acad Sci USA, 2004, 101(26): 9849-9854.
- 51. Kaminski MJ, Blinowska KJ. A new method of the description of the information flow in the brain structures. Biol Cybern, 1991, 65(3): 203-210.
- 52. Franaszczuk PJ, Bergey GK. Application of the directed transfer function method to mesial and lateral onset temporal lobe seizures. Brain Topogr, 1998, 11(1): 13-21.
- 53. Dai Y, Zhang W, Dickens DL, et al. Source connectivity analysis from MEG and its application to epilepsy source localization. Brain Topogr, 2012, 25(2): 157-166.
- 54. Korzeniewska A, Crainiceanu CM, Kus R, et al. Dynamics of event-related causality in brain electrical activity. Hum Brain Mapp, 2008, 29(10): 1170-1192.
- 55. Baccala LA, Sameshima K. Partial directed coherence: a new concept in neural structure determination. Biol Cybern, 2001, 84(6): 463-474.
- 56. Li YH, Ye XL, Liu QQ, et al. Localization of epileptogenic zone based on graph analysis of stereo-EEG. Epilepsy Res, 2016, 128: 149-157.
- 57. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci, 2009, 10(3): 186-198.
- 58. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature, 1998, 393(6684): 440-442.
- 59. Vecchio F, Miraglia F, Vollono C, et al. Pre-seizure architecture of the local connections of the epileptic focus examined via graph-theory. Clin Neurophysiol, 2016, 127(10): 3252-3258.
- 60. Ponten SC, Bartolomei F, Stam CJ. Small-world networks and epilepsy: Graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol, 2007, 118(4): 918-927.
- 61. Kramer M, Cash S. Epilepsy as a disorder of cortical network organization. Neuroscientist, 2012, 18(4): 360-372.
- 62. Bartolomei F, Bettus G, Stam CJ, et al. Interictal network properties in mesial temporal lobe epilepsy: a graph theoretical study from intracerebral recordings. Clin Neurophysiol, 2013, 124(12): 2345-2353.
- 63. Wilke C, Worrell G, He B. Graph analysis of epileptogenic networks in human partial epilepsy. Epilepsia, 2011, 52(1): 84-93.
- 64. Van Mierlo P, Carrette E, Hallez H, et al. Ictal-onset localization through connectivity analysis of intracranial EEG signals in patients with refractory epilepsy. Epilepsia, 2013, 54(8): 1409-1418.
- 65. Courtens S, Colombet B, Trebuchon A, et al. Graph measures of node strength for characterizing preictal synchrony in partial epilepsy. Brain Connect, 2016, 6(7): 530-539.
- 66. Amini L, Jutten C, Achard S, et al. Directed differential connectivity graph of interictal epileptiform discharges. IEEE Trans Biomed Eng, 2011, 58(4): 884-893.
- 67. Power JD, Schlaggar BL, Petersen SE. Studying brain organization via spontaneous fMRI signal. Neuron, 2014, 84(4): 681-696.
- 68. Lagarde S, Bonini F, McGonigal A, et al. Seizure-onset patterns in focal cortical dysplasia and neurodevelopmental tumors: Relationship with surgical prognosis and neuropathologic subtypes. Epilepsia, 2016, 57(9): 1426-1435.
- 69. Perucca P, Dubeau F, Gotman J. Intracranial electroenc-ephalo-graphic seizure-onset patterns: effect of underlying pathology. Brain, 2014, 137(Pt 1): 183-196.
- 70. Alarcon G, Binnie CD, Elwes RD, et al. Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy. Electroencephalogr Clin Neurophysiol, 1995, 94(5): 326-337.
- 71. Gnatkovsky V, De Curtis M, Pastori C, et al. Biomarkers of epileptogenic zone defined by quantified stereo-EEG analysis. Epilepsia, 2014, 55(2): 296-305.
- 72. Marchi A, Bonini F, Lagarde S, et al. Occipital and occipital “plus” epilepsies: a study of involved epileptogenic networks through SEEG quantification. Epilepsy Behav, 2016, 62: 104-114.
- 73. Bartolomei F, Cosandier-Rimele D, McGonigal A, et al. From mesial temporal lobe to temporoperisylvian seizures: a quantified study of temporal lobe seizure networks. Epilepsia, 2010, 51(10): 2147-2158.
- 74. Aubert S, Bonini F, Curot J, et al. The role of sub-hippocampal versus hippocampal regions in bitemporal lobe epilepsies. Clin Neurophysiol, 2016, 127(9): 2992-2999.
- 75. Bartolomei F, Gavaret M, Hewett R, et al. Neural networks underlying parietal lobe seizures: a quantified study from intracerebral recordings. Epilepsy Res, 2011, 93(2-3): 164-176.
- 76. Bonini F, McGonigal A, Wendling F, et al. Epileptogenic networks in seizures arising from motor systems. Epilepsy Res, 2013, 106(1-2): 92-102.
- 77. Job AS, De Palma L, Principe A, et al. The pivotal role of the supplementary motor area in startle epilepsy as demonstrated by SEEG epileptogenicity maps. Epilepsia, 2014, 55(8): e85-e88.
- 78. Aubert S, Wendling F, Regis J, et al. Local and remote epileptogenicity in focal cortical dysplasias and neuro-developmental tumours. Brain, 2009, 132(Pt 11): 3072-3086.
- 79. Sevy A, Gavaret M, Trebuchon A, et al. Beyond the lesion: the epileptogenic networks around cavernous angiomas. Epilepsy Res, 2014, 108(4): 701-708.
- 80. Brazier MA. Spread of seizure discharges in epilepsy: anatomical and electrophysiological considerations. Exp Neurol, 1972, 36(2): 263-272.
- 81. Gotman J, Levtova V. Amygdala-hippocampus relationships in temporal lobe seizures: a phase coherence study. Epilepsy Res, 1996, 25(1): 51-57.
- 82. Le Van QM, Adam C, Baulac M, et al. Nonlinear interdependencies of EEG signals in human intracranially recorded temporal lobe seizures. Brain Res, 1998, 792(1): 24-40.
- 83. Bartolomei F, Wendling F, Vignal J, et al. Seizures of temporal lobe epilepsy: identification of subtypes by coherence analysis using stereo-electro-encephalography. Clin Neurophysiol, 1999, 110(10): 1741-1754.
- 84. Schindler K, Leung H, Elger CE, et al. Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain, 2007, 130(Pt 1): 65-77.
- 85. Jiruska P, De Curtis M, Jefferys JG, et al. Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol, 2013, 591(4): 787-797.
- 86. Varotto G, Tassi L, Franceschetti S, et al. Epileptogenic networks of type II focal cortical dysplasia: a stereo-EEG study. NeuroImage, 2012, 61(3): 591-598.
- 87. Wendling F, Bartolomei F, Bellanger JJ, et al. Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset. Brain, 2003, 126(Pt 6): 1449-1459.
- 88. Arthuis M, Valton L, Regis J, et al. Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization. Brain, 2009, 132(Pt 8): 2091-101.
- 89. Kramer MA, Kolaczyk ED, Kirsch HE. Emergent network topology at seizure onset in humans. Epilepsy Res, 2008, 79(2-3): 173-186.
- 90. Evangelista E, Benar C, Bonini F, et al. Does the thalamo-cortical synchrony play a role in seizure termination? Front Neurol, 2015, 6: 192.
- 91. Bartolomei F, Chauvel P, Wendling F. Spatio-temporal dynamics of neuronal networks in partial epilepsy. Rev Neurol (Paris), 2005, 161(8-9): 767-780.
- 92. Bartolomei F, Wendling F, Regis J, et al. Pre-ictal synchronicity in limbic networks of mesial temporal lobe epilepsy. Epilepsy Res, 2004, 61(1-3): 89-104.
- 93. Wendling F, Bartolomei F, Bellanger JJ, et al. Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG. Clin Neurophysiol, 2001, 112(7): 1201-1218.
- 94. Bertram EH, Mangan PS, Zhang D, et al. The midline thalamus: alterations and a potential role in limbic epilepsy. Epilepsia, 2001, 42(8): 967-978.
- 95. Ponten SC, Bartolomei F, Stam CJ. Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol, 2007, 118(4): 918-927.
- 96. Schindler KA, Bialonski S, Horstmann MT, et al. Evolving functional network properties and synchronizability during human epileptic seizures. Chaos, 2008, 18(3): 033119.
- 97. Bancaud J, Talairach J. Clinical semiology of frontal lobe seizures. Adv Neurol, 1992, 57: 3-58.
- 98. Bassett DS, Bullmore ET, Meyer-Lindenberg A, et al. Cognitive fitness of cost-efficient brain functional networks. Proc Natl Acad Sci USA, 2009, 106(28): 11747-11752.
- 99. Bartolomei F, Barbeau E, Gavaret M, et al. Cortical stimulation study of the role of rhinal cortex in deja vu and reminiscence of memories. Neurology, 2004, 63(5): 858-864.
- 100. Barbeau E, Wendling F, Regis J, et al. Recollection of vivid memories after perirhinal region stimulations: synchronization in the theta range of spatially distributed brain areas. Neuropsychologia, 2005, 43(9): 1329-1337.
- 101. Bartolomei F, Barbeau EJ, Nguyen T, et al. Rhinal-hippocampal interactions during deja vu. Clin Neurophysiol, 2012, 123(3): 489-495.
- 102. Bartolomei F, Wendling F, Vignal JP, et al. Neural networks underlying epileptic humming. Epilepsia, 2002, 43(9): 1001-1012.
- 103. Bartolomei F, Naccache L. The global workspace (GW) theory of consciousness and epilepsy. Behav Neurol, 2011, 24(1): 67-74.
- 104. Dehaene S, Naccache L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition, 2001, 79(1-2): 1-37.
- 105. Lambert I, Arthuis M, McGonigal A, et al. Alteration of global workspace during loss of consciousness: a study of parietal seizures. Epilepsia, 2012, 53(12): 2104-2110.
- 106. Bonini F, Lambert I, Wendling F, et al. Altered synchrony and loss of consciousness during frontal lobe seizures. Clin Neurophysiol, 2016, 127(2): 1170-5.
- 107. Bartolomei F, Trebuchon A, Gavaret M, et al. Acute alteration of emotional behaviour in epileptic seizures is related to transient desynchrony in emotion-regulation networks. Clin Neurophysiol, 2005, 116(10): 2473-2479.
- 108. Bartolomei F, Trebuchon A, Bonini F, et al. What is the concordance between the seizure onset zone and the irritative zone? A SEEG quantified study Clin Neurophysiol, 2016, 127(2): 1157-1162.
- 109. Alarcon G, Guy CN, Binnie CD, et al. Intracerebral propagation of interictal activity in partial epilepsy: implications for source localisation. J Neurol Neurosurg Psychiatry, 1994, 57(4): 435-449.
- 110. Bourien J, Bartolomei F, Bellanger JJ, et al. A method to identify reproducible subsets of co-activated structures during interictal spikes. Application to intracerebral EEG in temporal lobe epilepsy. Clin Neurophysiol, 2005, 116(2): 443-455.
- 111. Badier JM, Bartolomei F, Chauvel P, et al. Magnetic source imaging in posterior cortex epilepsies. Brain Topogr, 2015, 28(1): 162-171.
- 112. Schevon CA, Cappell J, Emerson R, et al. Cortical abnormalities in epilepsy revealed by local EEG synchrony. NeuroImage, 2007, 35(1): 140-148.
- 113. Ortega GJ, Menendez De La Prida L, Sola RG, et al. Synchronization clusters of interictal activity in the lateral temporal cortex of epileptic patients: intraoperative electrocorticographic analysis. Epilepsia, 2008, 49(2): 269-280.
- 114. Warren CP, Hu S, Stead M, et al. Synchrony in normal and focal epileptic brain: the seizure onset zone is functionally disconnected. J Neurophysiol, 2010, 104(6): 3530-3539.
- 115. Mormann F, Lehnertz K, David P, et al. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D, 2000, 144: 358-369.
- 116. Bettus G, Wendling F, Guye M, et al. Enhanced EEG functional connectivity in mesial temporal lobe epilepsy. Epilepsy Res, 2008, 81(1): 58-68.
- 117. Blumenfeld H, Rivera M, Vasquez JG, et al. Neocortical and thalamic spread of amygdala kindled seizures. Epilepsia, 2007, 48(2): 254-262.
- 118. Bartolomei F, Bonini F, Vidal E, et al. How does vagal nerve stimulation (VNS) change EEG brain functional connectivity? Epilepsy Res, 2016, 126: 141-146.
- 119. Chavez M, Valencia M, Navarro V, et al. Functional modularity of background activities in normal and epileptic brain networks. Phys Rev Lett, 2010, 104(11): 118701.
- 120. Horstmann MT, Bialonski S, Noennig N, et al. State dependent properties of epileptic brain networks: comparative graph-theoretical analyses of simultaneously recorded EEG and MEG. Clin Neurophysiol, 2010, 121(2): 172-185.
- 121. Jayakar P, Gotman J, Harvey AS, et al. Diagnostic utility of invasive EEG for epilepsy surgery: indications, modalities, and techniques. Epilepsia, 2016, 57(11): 1735-1747.
- 122. Wendling F, Benquet P, Bartolomei F, et al. Computational models of epileptiform activity. J Neurosci Methods, 2016, 260: 233-251.
- 123. Proix T, Bartolomei F, Guye M, et al. Individual structural connectivity defines propagation networks in partial epilepsy. Brain, 2017, 140(3): 641-654.
-
Previous Article
鞘氨醇激酶/1-磷酸鞘氨醇信號通路在中樞神經系統疾病中的研究進展 -
Next Article
伴中央顳區棘波自限性癲癇患兒的認知功能:一項系統評價和薈萃分析

