特發性全面發作性癲癇(Idiopathic generalized epilepsy, IGE)是一類沒有明顯病因和大腦病灶的癲癇, 主要腦電圖(EEG)表現為突出背景的雙側對稱的癲癇放電。現在新興的無創的神經成像技術改變了以前對IGE的腦結構和功能網絡的研究模式。當前的研究者已經迅速地采用這些新技術研究IGE的腦特征性改變, 包括EEG、功能磁共振、同步腦電和功能磁共振、結構磁共振、彌散張量成像以及結構功能腦網絡技術。這些發現表明IGE中皮層-丘腦網絡中存在著結構和功能指標的異常, 且越來越多的多模態神經成像結果也評估了癲癇活動對大量腦功能網絡的影響。將來的研究將集中在多學科的融合和發展多模態神經成像技術, 更深入地研究IGE的腦網絡機制
Citation: 羅程, 堯德中. 特發性全面性癲癇的神經影像研究進展. Journal of Epilepsy, 2016, 2(1): 55-63. doi: 10.7507/2096-0247.20160011 Copy
Copyright ? the editorial department of Journal of Epilepsy of West China Medical Publisher. All rights reserved
| 1. | Engel J Jr. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia, 2001, 42 (6): 796-803. |
| 2. | Heather AL, Linda MP. Epilepsy: epidemiology, classification and natural history. Medicine, 2008, 36 (11): 571-578. |
| 3. | Gloor P. Generalized cortico-reticular epilepsies. Some considerations on the pathophysiology of generalized bilaterally synchronous spike and wave discharge. Epilepsia, 1968, 9 (3): 249-263. |
| 4. | Prince DA, Farrell D. Centrencephalic spike-wave discharges following parenteral penicillin injection in the cat. Neurology, 1969, 19(6): 309-310. |
| 5. | Meeren HK, Pijn JP, EL Van Luijtelaar, et al. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci, 2002, 22 (4): 1480-1495. |
| 6. | 堯德中.腦功能探測的電學理論與方法.北京:科學出版社. 2003, 357-398. |
| 7. | Engel J Jr. A practical guide for routine EEG studies in epilepsy. J Clin Neurophysiol, 1984, 1 (2): 109-142. |
| 8. | Noachtar S, Remi J. The role of EEG in epilepsy: a critical review. Epilepsy Behav, 2009, 15 (1): 22-33. |
| 9. | Yao D. A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol Meas, 2001, 22 (4): 693-711. |
| 10. | Qin Y, Xu P, Yao D. A comparative study of different references for EEG default mode network: the use of the infinity reference. Clin Neurophysiol, 2010, 121 (12): 1981-1991. |
| 11. | Hong SJ, Kim H, Schrader D, et al. Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology, 2014, 83 (1): 48-55. |
| 12. | Mueller SG, Laxer KD, Cashdollar N, et al. Voxel-based optimized morphometry (VBM) of gray and white matter in temporal lobe epilepsy (TLE) with and without mesial temporal sclerosis. Epilepsia, 2006, 47 (5): 900-907. |
| 13. | Bernhardt BC, Rozen DA, Worsley KJ, et al. Thalamo-cortical network pathology in idiopathic generalized epilepsy: insights from MRI-based morphometric correlation analysis. Neuroimage, 2009, 46 (2): 373-381. |
| 14. | Luo C, Zhang Y, Cao W, et al. Altered Structural and Functional Feature of Striato-Cortical Circuit In Benign Epilepsy with Centrotemporal Spikes. Int J Neural Syst, 2015, 32(7): 1550027. |
| 15. | Betting LE, Mory SB, Lopes-Cendes I, et al. MRI volumetry shows increased anterior thalamic volumes in patients with absence seizures. Epilepsy Behav, 2006, 8 (3): 575-580. |
| 16. | Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J, 1994, 66 (1): 259-267. |
| 17. | Rugg-Gunn FJ, Eriksson SH, Symms MR, et al. Diffusion tensor imaging of cryptogenic and acquired partial epilepsies. Brain, 2001, 124 (3): 627. |
| 18. | Kimiwada T, Juhász C, Makki M, et al. Hippocampal and thalamic diffusion abnormalities in children with temporal lobe epilepsy. Epilepsia, 2006, 47 (1): 167-175. |
| 19. | Concha L, Gross DW, Beaulieu C. Diffusion tensor tractography of the limbic system. American Journal Neuroradiology, 2005, 26 (9): 2267-2274. |
| 20. | Powell HW, Parker GJ, Alexander DC, et al. Abnormalities of language networks in temporal lobe epilepsy. Neuroimage, 2007, 36 (1): 209-221. |
| 21. | Chahboune H, Mishra AM, DeSalvo MN, et al. DTI abnormalities in anterior corpus callosum of rats with spike-wave epilepsy. NeuroImage, 2009, 47 (2): 459-466. |
| 22. | Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA, 1990, 87 (24): 9868-9872. |
| 23. | Lui S, Ouyang L, Chen Q, et al. Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure. J Magn Reson Imaging, 2008, 27 (6): 1214-1220. |
| 24. | Woermann FG, Jokeit H, Luerding R, et al. Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology, 2003, 61 (5): 699-701. |
| 25. | Richardson M. Current themes in neuroimaging of epilepsy: brain networks, dynamic phenomena, and clinical relevance. Clin Neurophysiol, 2010, 121 (8): 1153-1175. |
| 26. | 張志強, 盧光明, 鐘元, 等.低頻振幅算法功能磁共振成像對雙側海馬硬化顳葉癲癇的研究.中華醫學雜志, 2008, 88 (23): 1594-1598. |
| 27. | Wang P, Luo C, Dong L, et al. Altered intrinsic brain activity in patients with familial cortical myoclonic tremor and epilepsy: an amplitude of low-frequency fluctuation study. J Neurol Sci, 2015, 351 (1-2): 133-139. |
| 28. | Zhong Y, Lu G, Zhang Z, et al. Altered regional synchronization in epileptic patients with generalized tonic-clonic seizures. Epilepsy Res, 2011, 97 (1-2): 83-91. |
| 29. | Ding J, An D, Liao W, et al. Abnormal functional connectivity density in psychogenic non-epileptic seizures. Epilepsy Res, 2014, 108 (7): 1184-1194. |
| 30. | Dong L, Luo C, Cao W, et al. Spatiotemporal consistency of local neural activities: A new imaging measure for functional MRI data. J Magn Reson Imaging, 2015, 42 (3): 729-736. |
| 31. | Ives JR, Warach S, Schmitt F, et al. Monitoring the patient's EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol, 1993, 87 (6): 417-420. |
| 32. | Mantini D, Perrucci MG, Gratta C Del, et al. Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA, 2007, 104 (32): 13170-13175. |
| 33. | Gotman J, Kobayashi E, Bagshaw AP, et al. Combining EEG and fMRI: a multimodal tool for epilepsy research. J Magn Reson Imaging, 2006, 23 (6): 906-920. |
| 34. | Luo C, Yao Z, Li Q, et al. Imaging foci of epileptic discharges from simultaneous EEG and fMRI using the canonical HRF. Epilepsy Res, 2010, 91 (2-3): 133-142. |
| 35. | Dong L, Zhang Y, Zhang R, et al. Characterizing nonlinear relationships in functional imaging data using eigenspace maximal information canonical correlation analysis (emiCCA). Neuroimage, 2015, 10(9): 388-401. |
| 36. | Lei X, Xu P, Luo C, et al. fMRI functional networks for EEG source imaging. Hum Brain Mapp, 2011, 32 (7): 1141-1160. |
| 37. | Lei X, Hu J, Yao D. Incorporating FMRI functional networks in EEG source imaging: a Bayesian model comparison approach. Brain Topogr, 2012, 25 (1): 27-38. |
| 38. | Lei X, Qiu C, Xu P, et al. A parallel framework for simultaneous EEG/fMRI analysis: methodology and simulation. Neuroimage, 2010, 52 (3): 1123-1134. |
| 39. | Dong L, Gong D, Valdes-Sosa PA, et al. Simultaneous EEG-fMRI: trial level spatio-temporal fusion for hierarchically reliable information discovery. Neuroimage, 2014, 99: 28-41. |
| 40. | Tyvaert L, Hawco C, Kobayashi E, et al. Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study. Brain, 2008, 131 (Pt 8): 2042-2060. |
| 41. | Kobayashi E, Bagshaw AP, Benar CG, et al. Temporal and extratemporal BOLD responses to temporal lobe interictal spikes. Epilepsia, 2006, 47 (2): 343-354. |
| 42. | Aghakhani Y, Kobayashi E, Bagshaw AP, et al. Cortical and thalamic fMRI responses in partial epilepsy with focal and bilateral synchronous spikes. Clin Neurophysiol, 2006, 117 (1): 177-191. |
| 43. | An D, Fahoum F, Hall J, et al. Electroencephalography/functional magnetic resonance imaging responses help predict surgical outcome in focal epilepsy. Epilepsia, 2013, 54 (12): 2184-2194. |
| 44. | Gotman J, Grova C, Bagshaw A, et al. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci USA, 2005, 102 (42): 15236-15240. |
| 45. | Hamandi K, Salek-Haddadi A, Laufs H, et al. EEG-fMRI of idiopathic and secondarily generalized epilepsies. Neuroimage, 2006, 31 (4): 1700-1710. |
| 46. | Hawco CS, Bagshaw AP, Lu Y, et al. BOLD changes occur prior to epileptic spikes seen on scalp EEG. Neuroimage, 2007, 35 (4): 1450-1458. |
| 47. | Moeller F, Siebner HR, Wolff S, et al. Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia, 2008, 49 (9): 1510-1519. |
| 48. | Li Q, Luo C, Yang T, et al. EEG-fMRI study on the interictal and ictal generalized spike-wave discharges in patients with childhood absence epilepsy. Epilepsy Res, 2009, 87 (2-3): 160-168. |
| 49. | 堯德中, 羅程, 雷旭, 等.腦成像與腦連接.中國生物醫學工程學報, 2011, 30 (1): 6-10. |
| 50. | Friston KJ. Models of brain function in neuroimaging. Annu Rev Psychol, 2005, 56 (9): 57-87. |
| 51. | Biswal, B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance Medicine, 1995, 34 (4): 537-541. |
| 52. | Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci, 2007, 8 (9): 700-711. |
| 53. | Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist, 2006, 12 (6): 512-523. |
| 54. | Salvador R, Suckling J, Coleman MR, et al. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex, 2005, 15 (9): 1332-1342. |
| 55. | Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 2010, 52 (3): 1059-1069. |
| 56. | Gotman J. Epileptic networks studied with EEG-fMRI. Epilepsia, 2008, 49 (Suppl 3): 42-51. |
| 57. | Li Q, Luo C, Yang T, et al. EEG-fMRI study on the interictal and ictal generalized spike-wave discharges in patients with childhood absence epilepsy. Epilepsy Research, 2009, 87 (2-3): 160-168. |
| 58. | Banerjee PN, Filippi D, Hauser W Allen. The descriptive epidemiology of epilepsy-a review. Epilepsy Res, 2009, 85 (1): 31-45. |
| 59. | 楊飛, 羅程, 蔣思思, 等.青少年肌陣攣癲癇腦網絡的研究進展.中華神經科雜志, 2015, 48 (7): 620-622. |
| 60. | Carney PW, Masterton RA, Harvey AS, et al. The core network in absence epilepsy. Differences in cortical and thalamic BOLD response. Neurology, 2010, 75 (10): 904-911. |
| 61. | Holmes MD, Quiring J, Tucker DM. Evidence that juvenile myoclonic epilepsy is a disorder of frontotemporal corticothalamic networks. Neuroimage, 2010, 49 (1): 80-93. |
| 62. | Bettus G, Guedj E, Joyeux F, et al. Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp, 2009, 30 (5): 1580-1591. |
| 63. | Vaudano AE, Laufs H, Kiebel SJ, et al. Causal hierarchy within the thalamo-cortical network in spike and wave discharges. PLoS One, 2009, 4 (8): e6475. |
| 64. | Deransart C, Vercueil L, Marescaux C, et al. The role of basal ganglia in the control of generalized absence seizures. Epilepsy Res, 1998, 32 (1-2): 213-223. |
| 65. | Luo C, Li Q, Xia Y, et al. Resting state basal ganglia network in idiopathic generalized epilepsy. Hum Brain Mapp, 2012, 33 (6): 1279-1294. |
| 66. | Luo C, Li Q, Lai Y, et al. Altered functional connectivity in default mode network in absence epilepsy: a resting-state fMRI study. Hum Brain Mapp, 2011, 32 (3): 438-449. |
| 67. | Yang T, Luo C, Li Q, et al. Altered resting-state connectivity during interictal generalized spike-wave discharges in drug-naive childhood absence epilepsy. Hum Brain Mapp, 2013, 34 (8): 1761-1767. |
| 68. | Tian Y, Dong B, Ma J, et al. Attention networks in children with idiopathic generalized epilepsy. Epilepsy Behav, 2010, 19 (3): 513-517. |
| 69. | Zhang Z, Lu G, Zhong Y, et al. fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis. Hum Brain Mapp, 2010, 31 (12): 1851-1861. |
| 70. | Zhang Z, Lu G, Zhong Y, et al. Impaired perceptual networks in temporal lobe epilepsy revealed by resting fMRI. Journal Neurology, 2009, 256 (10): 1705-1713. |
| 71. | Zhang Z, Lu G, Zhong Y, et al. Impaired attention network in temporal lobe epilepsy: A resting FMRI study. Neuroscience Letters, 2009, 458 (3): 97-101. |
| 72. | Luo C, Qiu C, Guo Z, et al. Disrupted functional brain connectivity in partial epilepsy: a resting-state fMRI study. PLoS One, 2012, 7 (1): e28196. |
| 73. | Li Q, Cao W, Liao X, et al. Altered resting state functional network connectivity in children absence epilepsy. J Neurol Sci, 2015, 354 (1-2): 79-85. |
| 74. | Liao W, Zhang Z, Pan Z, et al. Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS One, 2010, 5 (1): e8525. |
| 75. | Zhang Z, Liao W, Chen H, et al. Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain, 2011, 134 (Pt 10): 2912-2928. |
| 76. | Brazdil M, Chlebus P, Mikl M, et al. Reorganization of language-related neuronal networks in patients with left temporal lobe epilepsy-an fMRI study. Eur J Neurol, 2005, 12 (4): 268-275. |
| 77. | Labudda K, Mertens M, Aengenendt J, et al. Presurgical language fMRI activation correlates with postsurgical verbal memory decline in left-sided temporal lobe epilepsy. Epilepsy Res, 2010, 92 (2-3): 258-261. |
| 78. | You X, Guillen M, Bernal B, et al. fMRI activation pattern recognition: A novel application of PCA in language network of pediatric localization related epilepsy. Conf Proc IEEE Eng Med Biol Soc, 2009, 29(11): 5397-5400. |
| 79. | He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex, 2007, 17 (10): 2407-2419. |
| 80. | Sanabria-Diaz G, Melie-Garcia L, Iturria-Medina Y, et al. Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks. Neuroimage, 2010, 50 (4): 1497-1510. |
| 81. | Ciccarelli O, Parker G, Toosy A, et al. From diffusion tractography to quantitative white matter tract measures: a reproducibility study. NeuroImage, 2003, 18 (2): 348-359. |
| 82. | Gong G, He Y, Concha L, et al. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex, 2009, 19 (3): 524-536. |
| 83. | Yogarajah M, Duncan JS Diffusion-based magnetic resonance imaging and tractography in epilepsy. Epilepsia, 2008, 49 (2): 189-200. |
| 84. | Powell H, Richardson MP, Symms MR, et al. Reorganization of verbal and nonverbal memory in temporal lobe epilepsy due to unilateral hippocampal sclerosis. Epilepsia, 2007, 48 (8): 1512-1525. |
| 85. | Adcock J, Wise R, Oxbury J, et al. Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy. NeuroImage, 2003, 18 (2): 423-438. |
| 86. | Thivard L, Hombrouck J, Tézenas du Montcel S, et al. Productive and perceptive language reorganization in temporal lobe epilepsy. NeuroImage, 2005, 24 (3): 841-851. |
| 87. | Concha L, Beaulieu C, Gross DW. Bilateral limbic diffusion abnormalities in unilateral temporal lobe epilepsy. Annals Neurology, 2005, 57 (2): 188-196. |
| 88. | Kikuta K-i, Takagi Y, Nozaki K, et al. Early experience with 3-T magnetic resonance tractography in the surgery of cerebral arteriovenous malformations in and around the visual pathway. Neurosurgery, 2006, 58 (2): 331-337. |
| 89. | Yu CS, Li KC, Xuan Y, et al. Diffusion tensor tractography in patients with cerebral tumors: a helpful technique for neurosurgical planning and postoperative assessment. European Journal Radiology, 2005, 56 (2): 197-204. |
| 90. | Vaessen M, Jansen J, Hofman P, et al. Impaired small-world structural brain networks in chronic epilepsy. NeuroImage, 2009, 47(2): S113. |
| 91. | 薛開慶, 羅程, 楊天華, 等.兒童失神癲癇的默認模式網絡的結構連接研究.生物化學與生理學進展, 2013, 40 (9): 826-833. |
| 92. | 薛開慶, 羅程, 田銀, 等.基于彌散張量成像的兒童失神癲癇認知控制網絡的結構連接研究.中國生物醫學工程學報, 2013, 32 (4): 426-432. |
| 93. | Xue K, Luo C, Zhang D, et al. Diffusion tensor tractography reveals disrupted structural connectivity in childhood absence epilepsy. Epilepsy Res, 2014, 108 (1): 125-38. |
- 1. Engel J Jr. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia, 2001, 42 (6): 796-803.
- 2. Heather AL, Linda MP. Epilepsy: epidemiology, classification and natural history. Medicine, 2008, 36 (11): 571-578.
- 3. Gloor P. Generalized cortico-reticular epilepsies. Some considerations on the pathophysiology of generalized bilaterally synchronous spike and wave discharge. Epilepsia, 1968, 9 (3): 249-263.
- 4. Prince DA, Farrell D. Centrencephalic spike-wave discharges following parenteral penicillin injection in the cat. Neurology, 1969, 19(6): 309-310.
- 5. Meeren HK, Pijn JP, EL Van Luijtelaar, et al. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci, 2002, 22 (4): 1480-1495.
- 6. 堯德中.腦功能探測的電學理論與方法.北京:科學出版社. 2003, 357-398.
- 7. Engel J Jr. A practical guide for routine EEG studies in epilepsy. J Clin Neurophysiol, 1984, 1 (2): 109-142.
- 8. Noachtar S, Remi J. The role of EEG in epilepsy: a critical review. Epilepsy Behav, 2009, 15 (1): 22-33.
- 9. Yao D. A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol Meas, 2001, 22 (4): 693-711.
- 10. Qin Y, Xu P, Yao D. A comparative study of different references for EEG default mode network: the use of the infinity reference. Clin Neurophysiol, 2010, 121 (12): 1981-1991.
- 11. Hong SJ, Kim H, Schrader D, et al. Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology, 2014, 83 (1): 48-55.
- 12. Mueller SG, Laxer KD, Cashdollar N, et al. Voxel-based optimized morphometry (VBM) of gray and white matter in temporal lobe epilepsy (TLE) with and without mesial temporal sclerosis. Epilepsia, 2006, 47 (5): 900-907.
- 13. Bernhardt BC, Rozen DA, Worsley KJ, et al. Thalamo-cortical network pathology in idiopathic generalized epilepsy: insights from MRI-based morphometric correlation analysis. Neuroimage, 2009, 46 (2): 373-381.
- 14. Luo C, Zhang Y, Cao W, et al. Altered Structural and Functional Feature of Striato-Cortical Circuit In Benign Epilepsy with Centrotemporal Spikes. Int J Neural Syst, 2015, 32(7): 1550027.
- 15. Betting LE, Mory SB, Lopes-Cendes I, et al. MRI volumetry shows increased anterior thalamic volumes in patients with absence seizures. Epilepsy Behav, 2006, 8 (3): 575-580.
- 16. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J, 1994, 66 (1): 259-267.
- 17. Rugg-Gunn FJ, Eriksson SH, Symms MR, et al. Diffusion tensor imaging of cryptogenic and acquired partial epilepsies. Brain, 2001, 124 (3): 627.
- 18. Kimiwada T, Juhász C, Makki M, et al. Hippocampal and thalamic diffusion abnormalities in children with temporal lobe epilepsy. Epilepsia, 2006, 47 (1): 167-175.
- 19. Concha L, Gross DW, Beaulieu C. Diffusion tensor tractography of the limbic system. American Journal Neuroradiology, 2005, 26 (9): 2267-2274.
- 20. Powell HW, Parker GJ, Alexander DC, et al. Abnormalities of language networks in temporal lobe epilepsy. Neuroimage, 2007, 36 (1): 209-221.
- 21. Chahboune H, Mishra AM, DeSalvo MN, et al. DTI abnormalities in anterior corpus callosum of rats with spike-wave epilepsy. NeuroImage, 2009, 47 (2): 459-466.
- 22. Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA, 1990, 87 (24): 9868-9872.
- 23. Lui S, Ouyang L, Chen Q, et al. Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure. J Magn Reson Imaging, 2008, 27 (6): 1214-1220.
- 24. Woermann FG, Jokeit H, Luerding R, et al. Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology, 2003, 61 (5): 699-701.
- 25. Richardson M. Current themes in neuroimaging of epilepsy: brain networks, dynamic phenomena, and clinical relevance. Clin Neurophysiol, 2010, 121 (8): 1153-1175.
- 26. 張志強, 盧光明, 鐘元, 等.低頻振幅算法功能磁共振成像對雙側海馬硬化顳葉癲癇的研究.中華醫學雜志, 2008, 88 (23): 1594-1598.
- 27. Wang P, Luo C, Dong L, et al. Altered intrinsic brain activity in patients with familial cortical myoclonic tremor and epilepsy: an amplitude of low-frequency fluctuation study. J Neurol Sci, 2015, 351 (1-2): 133-139.
- 28. Zhong Y, Lu G, Zhang Z, et al. Altered regional synchronization in epileptic patients with generalized tonic-clonic seizures. Epilepsy Res, 2011, 97 (1-2): 83-91.
- 29. Ding J, An D, Liao W, et al. Abnormal functional connectivity density in psychogenic non-epileptic seizures. Epilepsy Res, 2014, 108 (7): 1184-1194.
- 30. Dong L, Luo C, Cao W, et al. Spatiotemporal consistency of local neural activities: A new imaging measure for functional MRI data. J Magn Reson Imaging, 2015, 42 (3): 729-736.
- 31. Ives JR, Warach S, Schmitt F, et al. Monitoring the patient's EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol, 1993, 87 (6): 417-420.
- 32. Mantini D, Perrucci MG, Gratta C Del, et al. Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA, 2007, 104 (32): 13170-13175.
- 33. Gotman J, Kobayashi E, Bagshaw AP, et al. Combining EEG and fMRI: a multimodal tool for epilepsy research. J Magn Reson Imaging, 2006, 23 (6): 906-920.
- 34. Luo C, Yao Z, Li Q, et al. Imaging foci of epileptic discharges from simultaneous EEG and fMRI using the canonical HRF. Epilepsy Res, 2010, 91 (2-3): 133-142.
- 35. Dong L, Zhang Y, Zhang R, et al. Characterizing nonlinear relationships in functional imaging data using eigenspace maximal information canonical correlation analysis (emiCCA). Neuroimage, 2015, 10(9): 388-401.
- 36. Lei X, Xu P, Luo C, et al. fMRI functional networks for EEG source imaging. Hum Brain Mapp, 2011, 32 (7): 1141-1160.
- 37. Lei X, Hu J, Yao D. Incorporating FMRI functional networks in EEG source imaging: a Bayesian model comparison approach. Brain Topogr, 2012, 25 (1): 27-38.
- 38. Lei X, Qiu C, Xu P, et al. A parallel framework for simultaneous EEG/fMRI analysis: methodology and simulation. Neuroimage, 2010, 52 (3): 1123-1134.
- 39. Dong L, Gong D, Valdes-Sosa PA, et al. Simultaneous EEG-fMRI: trial level spatio-temporal fusion for hierarchically reliable information discovery. Neuroimage, 2014, 99: 28-41.
- 40. Tyvaert L, Hawco C, Kobayashi E, et al. Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study. Brain, 2008, 131 (Pt 8): 2042-2060.
- 41. Kobayashi E, Bagshaw AP, Benar CG, et al. Temporal and extratemporal BOLD responses to temporal lobe interictal spikes. Epilepsia, 2006, 47 (2): 343-354.
- 42. Aghakhani Y, Kobayashi E, Bagshaw AP, et al. Cortical and thalamic fMRI responses in partial epilepsy with focal and bilateral synchronous spikes. Clin Neurophysiol, 2006, 117 (1): 177-191.
- 43. An D, Fahoum F, Hall J, et al. Electroencephalography/functional magnetic resonance imaging responses help predict surgical outcome in focal epilepsy. Epilepsia, 2013, 54 (12): 2184-2194.
- 44. Gotman J, Grova C, Bagshaw A, et al. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci USA, 2005, 102 (42): 15236-15240.
- 45. Hamandi K, Salek-Haddadi A, Laufs H, et al. EEG-fMRI of idiopathic and secondarily generalized epilepsies. Neuroimage, 2006, 31 (4): 1700-1710.
- 46. Hawco CS, Bagshaw AP, Lu Y, et al. BOLD changes occur prior to epileptic spikes seen on scalp EEG. Neuroimage, 2007, 35 (4): 1450-1458.
- 47. Moeller F, Siebner HR, Wolff S, et al. Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia, 2008, 49 (9): 1510-1519.
- 48. Li Q, Luo C, Yang T, et al. EEG-fMRI study on the interictal and ictal generalized spike-wave discharges in patients with childhood absence epilepsy. Epilepsy Res, 2009, 87 (2-3): 160-168.
- 49. 堯德中, 羅程, 雷旭, 等.腦成像與腦連接.中國生物醫學工程學報, 2011, 30 (1): 6-10.
- 50. Friston KJ. Models of brain function in neuroimaging. Annu Rev Psychol, 2005, 56 (9): 57-87.
- 51. Biswal, B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance Medicine, 1995, 34 (4): 537-541.
- 52. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci, 2007, 8 (9): 700-711.
- 53. Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist, 2006, 12 (6): 512-523.
- 54. Salvador R, Suckling J, Coleman MR, et al. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex, 2005, 15 (9): 1332-1342.
- 55. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 2010, 52 (3): 1059-1069.
- 56. Gotman J. Epileptic networks studied with EEG-fMRI. Epilepsia, 2008, 49 (Suppl 3): 42-51.
- 57. Li Q, Luo C, Yang T, et al. EEG-fMRI study on the interictal and ictal generalized spike-wave discharges in patients with childhood absence epilepsy. Epilepsy Research, 2009, 87 (2-3): 160-168.
- 58. Banerjee PN, Filippi D, Hauser W Allen. The descriptive epidemiology of epilepsy-a review. Epilepsy Res, 2009, 85 (1): 31-45.
- 59. 楊飛, 羅程, 蔣思思, 等.青少年肌陣攣癲癇腦網絡的研究進展.中華神經科雜志, 2015, 48 (7): 620-622.
- 60. Carney PW, Masterton RA, Harvey AS, et al. The core network in absence epilepsy. Differences in cortical and thalamic BOLD response. Neurology, 2010, 75 (10): 904-911.
- 61. Holmes MD, Quiring J, Tucker DM. Evidence that juvenile myoclonic epilepsy is a disorder of frontotemporal corticothalamic networks. Neuroimage, 2010, 49 (1): 80-93.
- 62. Bettus G, Guedj E, Joyeux F, et al. Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp, 2009, 30 (5): 1580-1591.
- 63. Vaudano AE, Laufs H, Kiebel SJ, et al. Causal hierarchy within the thalamo-cortical network in spike and wave discharges. PLoS One, 2009, 4 (8): e6475.
- 64. Deransart C, Vercueil L, Marescaux C, et al. The role of basal ganglia in the control of generalized absence seizures. Epilepsy Res, 1998, 32 (1-2): 213-223.
- 65. Luo C, Li Q, Xia Y, et al. Resting state basal ganglia network in idiopathic generalized epilepsy. Hum Brain Mapp, 2012, 33 (6): 1279-1294.
- 66. Luo C, Li Q, Lai Y, et al. Altered functional connectivity in default mode network in absence epilepsy: a resting-state fMRI study. Hum Brain Mapp, 2011, 32 (3): 438-449.
- 67. Yang T, Luo C, Li Q, et al. Altered resting-state connectivity during interictal generalized spike-wave discharges in drug-naive childhood absence epilepsy. Hum Brain Mapp, 2013, 34 (8): 1761-1767.
- 68. Tian Y, Dong B, Ma J, et al. Attention networks in children with idiopathic generalized epilepsy. Epilepsy Behav, 2010, 19 (3): 513-517.
- 69. Zhang Z, Lu G, Zhong Y, et al. fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis. Hum Brain Mapp, 2010, 31 (12): 1851-1861.
- 70. Zhang Z, Lu G, Zhong Y, et al. Impaired perceptual networks in temporal lobe epilepsy revealed by resting fMRI. Journal Neurology, 2009, 256 (10): 1705-1713.
- 71. Zhang Z, Lu G, Zhong Y, et al. Impaired attention network in temporal lobe epilepsy: A resting FMRI study. Neuroscience Letters, 2009, 458 (3): 97-101.
- 72. Luo C, Qiu C, Guo Z, et al. Disrupted functional brain connectivity in partial epilepsy: a resting-state fMRI study. PLoS One, 2012, 7 (1): e28196.
- 73. Li Q, Cao W, Liao X, et al. Altered resting state functional network connectivity in children absence epilepsy. J Neurol Sci, 2015, 354 (1-2): 79-85.
- 74. Liao W, Zhang Z, Pan Z, et al. Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS One, 2010, 5 (1): e8525.
- 75. Zhang Z, Liao W, Chen H, et al. Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain, 2011, 134 (Pt 10): 2912-2928.
- 76. Brazdil M, Chlebus P, Mikl M, et al. Reorganization of language-related neuronal networks in patients with left temporal lobe epilepsy-an fMRI study. Eur J Neurol, 2005, 12 (4): 268-275.
- 77. Labudda K, Mertens M, Aengenendt J, et al. Presurgical language fMRI activation correlates with postsurgical verbal memory decline in left-sided temporal lobe epilepsy. Epilepsy Res, 2010, 92 (2-3): 258-261.
- 78. You X, Guillen M, Bernal B, et al. fMRI activation pattern recognition: A novel application of PCA in language network of pediatric localization related epilepsy. Conf Proc IEEE Eng Med Biol Soc, 2009, 29(11): 5397-5400.
- 79. He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex, 2007, 17 (10): 2407-2419.
- 80. Sanabria-Diaz G, Melie-Garcia L, Iturria-Medina Y, et al. Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks. Neuroimage, 2010, 50 (4): 1497-1510.
- 81. Ciccarelli O, Parker G, Toosy A, et al. From diffusion tractography to quantitative white matter tract measures: a reproducibility study. NeuroImage, 2003, 18 (2): 348-359.
- 82. Gong G, He Y, Concha L, et al. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex, 2009, 19 (3): 524-536.
- 83. Yogarajah M, Duncan JS Diffusion-based magnetic resonance imaging and tractography in epilepsy. Epilepsia, 2008, 49 (2): 189-200.
- 84. Powell H, Richardson MP, Symms MR, et al. Reorganization of verbal and nonverbal memory in temporal lobe epilepsy due to unilateral hippocampal sclerosis. Epilepsia, 2007, 48 (8): 1512-1525.
- 85. Adcock J, Wise R, Oxbury J, et al. Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy. NeuroImage, 2003, 18 (2): 423-438.
- 86. Thivard L, Hombrouck J, Tézenas du Montcel S, et al. Productive and perceptive language reorganization in temporal lobe epilepsy. NeuroImage, 2005, 24 (3): 841-851.
- 87. Concha L, Beaulieu C, Gross DW. Bilateral limbic diffusion abnormalities in unilateral temporal lobe epilepsy. Annals Neurology, 2005, 57 (2): 188-196.
- 88. Kikuta K-i, Takagi Y, Nozaki K, et al. Early experience with 3-T magnetic resonance tractography in the surgery of cerebral arteriovenous malformations in and around the visual pathway. Neurosurgery, 2006, 58 (2): 331-337.
- 89. Yu CS, Li KC, Xuan Y, et al. Diffusion tensor tractography in patients with cerebral tumors: a helpful technique for neurosurgical planning and postoperative assessment. European Journal Radiology, 2005, 56 (2): 197-204.
- 90. Vaessen M, Jansen J, Hofman P, et al. Impaired small-world structural brain networks in chronic epilepsy. NeuroImage, 2009, 47(2): S113.
- 91. 薛開慶, 羅程, 楊天華, 等.兒童失神癲癇的默認模式網絡的結構連接研究.生物化學與生理學進展, 2013, 40 (9): 826-833.
- 92. 薛開慶, 羅程, 田銀, 等.基于彌散張量成像的兒童失神癲癇認知控制網絡的結構連接研究.中國生物醫學工程學報, 2013, 32 (4): 426-432.
- 93. Xue K, Luo C, Zhang D, et al. Diffusion tensor tractography reveals disrupted structural connectivity in childhood absence epilepsy. Epilepsy Res, 2014, 108 (1): 125-38.
-
Previous Article
電刺激癲癇動物模型的研究進展 -
Next Article
海馬硬化與癲癇

