| 1. |
熊昱鵬, 劉文清, 祁海燕等. 肥胖和代謝綜合征相關機制和研究進展. 臨床醫學進展, 2023, 13(9): 14560-14568.
|
| 2. |
Fahed G, Aoun L, Bou Zerdan M, et al. Metabolic syndrome: updates on pathophysiology and management in 2021. Int J Mol Sci, 2022, 23(2): 786.
|
| 3. |
Noubiap JJ, Nansseu JR, Lontchi-Yimagou E, et al. Global, regional, and country estimates of metabolic syndrome burden in children and adolescents in 2020: a systematic review and modelling analysis. Lancet Child Adolesc Health, 2022, 6(3): 158-170.
|
| 4. |
葉佩玉, 閆銀坤, 丁文清, 等. 中國兒童青少年代謝綜合征患病率Meta分析. 中華流行病學雜志, 2015, 36(8): 884-888.
|
| 5. |
中華醫學會兒科學分會內分泌遺傳代謝學組, 中華醫學會兒科學分會心血管學組, 中華醫學會兒科學分會兒童保健學組. 中國兒童青少年代謝綜合征定義和防治建議. 中華兒科雜志, 2012, 50(6): 420-422.
|
| 6. |
張美仙, 米杰. 中國兒童青少年代謝性心血管危險因素流行現狀. 中國循證兒科雜志, 2010, 5(3): 228-236.
|
| 7. |
Mottillo S, Filion KB, Genest J, et al. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol, 2010, 56(14): 1113-1132.
|
| 8. |
Wentzel A, Mabhida SE, Ndlovu M, et al. Prevalence of metabolic syndrome in children and adolescents with obesity: a systematic review and meta-analysis. Obesity (Silver Spring), 2025, 33(1): 12-32.
|
| 9. |
鐘美容, 盧小菊, 梁志金. 自我管理健康教育對提高代謝綜合征患者治療依從性的研究. 中國實用護理雜志, 2009, 25(20): 11-13.
|
| 10. |
中華醫學會老年醫學分會老年內分泌代謝疾病學組中國老年代謝綜合征藥物治療專家共識(2022)編寫組. 中國老年人代謝綜合征藥物治療專家共識(2022). 中華老年醫學雜志, 2022, 41(9): 1011-1027.
|
| 11. |
徐瑞, 曹友祥. 獨立有氧運動對肥胖兒童青少年代謝綜合征患者作用效果的Meta分析//中國體育科學學會. 第十二屆全國體育科學大會論文摘要匯編——專題報告(體質與健康分會). 上海: 2022.
|
| 12. |
張艷濤, 茍小軍, 朱一冰. 兒童和青少年代謝綜合征診斷和治療的研究進展. 國際兒科學雜志, 2018, 45(5): 397-400.
|
| 13. |
高鑫, 張培珍. 代謝綜合征發病機制及運動調控研究進展. 中華健康管理學雜志, 2024, 18(6): 475-480.
|
| 14. |
Zhou Y, Wu W, Zou Y, et al. Benefits of different combinations of aerobic and resistance exercise for improving plasma glucose and lipid metabolism and sleep quality among elderly patients with metabolic syndrome: a randomized controlled trial. Endocr J, 2022, 69(7): 819-830.
|
| 15. |
周永戰, 陳佩杰, 肖衛華. 規律性有氧運動對常見慢性疾病的抗炎效應及其機制. 中國康復醫學雜志, 2019, 34(8): 974-979.
|
| 16. |
Stensvold D, Tj?nna AE, Skaug EA, et al. Strength training versus aerobic interval training to modify risk factors of metabolic syndrome. J Appl Physiol (1985), 2010, 108(4): 804-810.
|
| 17. |
Ostman C, Smart NA, Morcos D, et al. The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: a systematic review and meta-analysis. Cardiovasc Diabetol, 2017, 16(1): 110.
|
| 18. |
Liang M, Pan Y, Zhong T, et al. Effects of aerobic, resistance, and combined exercise on metabolic syndrome parameters and cardiovascular risk factors: a systematic review and network meta-analysis. Rev Cardiovasc Med, 2021, 22(4): 1523-1533.
|
| 19. |
Zimmet P, Alberti G, Kaufman F, et al. The metabolic syndrome in children and adolescents. Lancet, 2007, 369(9579): 2059-2061.
|
| 20. |
Higgins JP, Altman DG, G?tzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ, 2011, 343: d5928.
|
| 21. |
Salanti G, Del Giovane C, Chaimani A, et al. Evaluating the quality of evidence from a network meta-analysis. PLoS One, 2014, 9(7): e99682.
|
| 22. |
Higgins JTJ, Chandler J, Cumpston M, et al. Cochrane handbook for systematic reviews of interventions. Cochrane Collaboration, 2022.
|
| 23. |
Chaimani A, Higgins JP, Mavridis D, et al. Graphical tools for network meta-analysis in STATA. PLoS One, 2013, 8(10): e76654.
|
| 24. |
Shim S, Yoon BH, Shin IS, et al. Network meta-analysis: application and practice using Stata. Epidemiol Health, 2017, 39: e2017047.
|
| 25. |
Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol, 2011, 64(2): 163-171.
|
| 26. |
Mbuagbaw L, Rochwerg B, Jaeschke R, et al. Approaches to interpreting and choosing the best treatments in network meta-analyses. Syst Rev, 2017, 6(1): 79.
|
| 27. |
Chen C, Chuang YC, Chan ES, et al. Beading plot: a novel graphics for ranking interventions in network evidence. BMC Med Res Methodol, 2024, 24(1): 235.
|
| 28. |
Del Rosso S, Baraquet ML, Barale A, et al. Long-term effects of different exercise training modes on cytokines and adipokines in individuals with overweight/obesity and cardiometabolic diseases: a systematic review, meta-analysis, and meta-regression of randomized controlled trials. Obes Rev, 2023, 24(6): e13564.
|
| 29. |
Mawdsley D, Bennetts M, Dias S, et al. Model-based network meta-analysis: a framework for evidence synthesis of clinical trial data. CPT Pharmacometrics Syst Pharmacol, 2016, 5(8): 393-401.
|
| 30. |
Liang Z, Zhang M, Wang C, et al. The best exercise modality and dose to reduce glycosylated hemoglobin in patients with type 2 diabetes: a systematic review with pairwise, network, and dose-response meta-analyses. Sports Med, 2024, 54(10): 2557-2570.
|
| 31. |
Gallardo-Gómez D, Del Pozo-Cruz J, Noetel M, et al. Optimal dose and type of exercise to improve cognitive function in older adults: A systematic review and bayesian model-based network meta-analysis of RCTs. Ageing Res Rev, 2022, 76: 101591.
|
| 32. |
Higgins JP, Jackson D, Barrett JK, et al. Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods, 2012, 3(2): 98-110.
|
| 33. |
Pedder H, Dias S, Bennetts M, et al. Modelling time-course relationships with multiple treatments: model-based network meta-analysis for continuous summary outcomes. Res Synth Methods, 2019, 10(2): 267-286.
|
| 34. |
Evans NJ. Assessing the practical differences between model selection methods in inferences about choice response time tasks. Psychon Bull Rev, 2019, 26(4): 1070-1098.
|
| 35. |
Alberga AS, Goldfield GS, Kenny GP, et al. Healthy eating, aerobic and resistance training in youth (HEARTY): study rationale, design and methods. Contemp Clin Trials, 2012, 33(4): 839-847.
|
| 36. |
McArdle WD, Katch FI, Katch VL. Energy transfer in the body. Exercise physiology: energy nutrition and human performance. 5th ed. Baltimore, MD: Lippincott Williams & Wilkins, 2001: 131-156.
|
| 37. |
Kraus WE, Levine BD. Exercise training for diabetes: the "strength" of the evidence. Ann Intern Med, 2007, 147(6): 423-424.
|
| 38. |
Sigal RJ, Alberga AS, Goldfield GS, et al. Effects of aerobic training, resistance training, or both on percentage body fat and cardiometabolic risk markers in obese adolescents: the healthy eating aerobic and resistance training in youth randomized clinical trial. JAMA Pediatr, 2014, 168(11): 1006-1014.
|
| 39. |
Ho SS, Dhaliwal SS, Hills AP, et al. The effect of 12 weeks of aerobic, resistance or combination exercise training on cardiovascular risk factors in the overweight and obese in a randomized trial. BMC Public Health, 2012, 12: 704.
|
| 40. |
Kelley GA, Kelley KS, Pate RR. Exercise and adiposity in overweight and obese children and adolescents: a systematic review with network meta-analysis of randomised trials. BMJ Open, 2019, 9(11): e031220.
|
| 41. |
Liu X, Li Q, Lu F, et al. Effects of aerobic exercise combined with resistance training on body composition and metabolic health in children and adolescents with overweight or obesity: systematic review and meta-analysis. Front Public Health, 2024, 12: 1409660.
|
| 42. |
Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med, 2014, 44(2): 211-221.
|
| 43. |
Muscella A, Stefàno E, Lunetti P, et al. The regulation of fat metabolism during aerobic exercise. Biomolecules, 2020, 10(12): 1699.
|
| 44. |
Liu Y, Wang X, Fang Z. Evaluating the impact of exercise on intermediate disease markers in overweight and obese individuals through a network meta-analysis of randomized controlled trials. Sci Rep, 2024, 14(1): 12137.
|
| 45. |
Chen C, Zhai J, Hu S, et al. Effects of different physical exercise types on health outcomes of individuals with hypertensive disorders of pregnancy: a prospective randomized controlled clinical study. J Matern Fetal Neonatal Med, 2024, 37(1): 2421278.
|
| 46. |
Pattyn N, Cornelissen VA, Eshghi SR, et al. The effect of exercise on the cardiovascular risk factors constituting the metabolic syndrome: a meta-analysis of controlled trials. Sports Med, 2013, 43(2): 121-133.
|
| 47. |
Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med, 2014, 44(2): 211-221.
|
| 48. |
Duan Y, Lu G. A randomized controlled trial to determine the impact of resistance training versus aerobic training on the management of FGF-21 and related physiological variables in obese men with Type 2 diabetes mellitus. J Sports Sci Med, 2024, 23(1): 495-503.
|
| 49. |
Chen T, Lin J, Lin Y, et al. Effects of aerobic exercise and resistance exercise on physical indexes and cardiovascular risk factors in obese and overweight school-age children: a systematic review and meta-analysis. PLoS One, 2021, 16(9): e0257150.
|
| 50. |
Reisin E, Frohlich ED, Messerli FH, et al. Cardiovascular changes after weight reduction in obesity hypertension. Ann Intern Med, 1983, 98(3): 315-319.
|
| 51. |
Herbert PN, Bernier DN, Cullinane EM, et al. High-density lipoprotein metabolism in runners and sedentary men. JAMA. 1984, 252(8): 1034-1037.
|
| 52. |
Rashid S, Genest J. Effect of obesity on high-density lipoprotein metabolism. Obesity (Silver Spring), 2007, 15(12): 2875-2888.
|
| 53. |
Mohanka M, Irwin M, Heckbert SR, et al. Serum lipoproteins in overweight/obese postmenopausal women: a one-year exercise trial. Med Sci Sports Exerc, 2006, 38(2): 231-239.
|
| 54. |
Park SK, Park JH, Kwon YC, et al. The effect of combined aerobic and resistance exercise training on abdominal fat in obese middle-aged women. J Physiol Anthropol Appl Human Sci, 2003, 22(3): 129-135.
|
| 55. |
Smart NA, Downes D, van der Touw T, et al. The effect of exercise training on blood lipids: a systematic review and meta-analysis. Sports Med, 2025, 55(1): 67-78.
|
| 56. |
Xing S, Xie Y, Zhang Y, et al. Effect of different training modalities on lipid metabolism in patients with type ii diabetes mellitus: a network meta-analysis. Ann Med, 2024, 56(1): 2428432.
|
| 57. |
Leaf DA. The effect of physical exercise on reverse cholesterol transport. Metabolism, 2003, 52(8): 950-957.
|
| 58. |
Ferguson MA, Alderson NL, Trost SG, et al. Effects of four different single exercise sessions on lipids, lipoproteins, and lipoprotein lipase. J Appl Physiol (1985), 1998, 85(3): 1169-1174.
|
| 59. |
Campaigne BN, Fontaine RN, Park MS, et al. Reverse cholesterol transport with acute exercise. Med Sci Sports Exerc. 1993, 25(12): 1346-1351.
|
| 60. |
Sheikholeslami Vatani D, Ahmadi S, Ahmadi Dehrashid K, et al. Changes in cardiovascular risk factors and inflammatory markers of young, healthy, men after six weeks of moderate or high intensity resistance training. J Sports Med Phys Fitness. 2011, 51(4): 695-700.
|
| 61. |
Fett CA, Fett WC, Marchini JS. Circuit weight training vs jogging in metabolic risk factors of overweight/obese women. Arq Bras Cardiol, 2009, 93(5): 519-525.
|
| 62. |
王晶晶, 陳文鶴. 運動減肥對肥胖青少年身體形態、血液生化指標和心率的影響. 上海體育學院學報, 2009, 33(6): 58-61,66.
|
| 63. |
Hansen PA, Nolte LA, Chen MM, et al. Increased GLUT-4 translocation mediates enhanced insulin sensitivity of muscle glucose transport after exercise. J Appl Physiol (1985), 1998, 85(4): 1218-1222.
|
| 64. |
O'Gorman DJ, Karlsson HK, McQuaid S, et al. Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes. Diabetologia, 2006, 49(12): 2983-2992.
|
| 65. |
Yaribeygi H, Atkin SL, Simental-Mendía LE, et al. Molecular mechanisms by which aerobic exercise induces insulin sensitivity. J Cell Physiol, 2019, 234(8): 12385-12392.
|
| 66. |
Dores H, Antunes M, Caldeira D, et al. Cardiovascular benefits of resistance exercise: it's time to prescribe. Rev Port Cardiol, 2024, 43(10): 573-582.
|
| 67. |
麻曉君, 戴霞, 陸麗榮, 等. 有氧運動和抗阻運動對糖調節受損患者空腹血糖及胰島素抵抗的影響研究. 中國全科醫學, 2017, 20(29): 3584-3589.
|
| 68. |
趙瑞, 陳樂琴, 吳依妮, 等. 有氧運動對超重肥胖兒童執行功能影響的Meta分析. 中國全科醫學, 2024, 27(30): 3817-3824.
|
| 69. |
陳琴, 張培珍. 不同運動方式對高血壓的影響. 中華高血壓雜志(中英文), 2024, 32(8): 787-795.
|
| 70. |
MacDonald HV, Johnson BT, Huedo-Medina TB, et al. Dynamic resistance training as stand-alone antihypertensive lifestyle therapy: a meta-analysis. J Am Heart Assoc, 2016, 5(10): e003231.
|
| 71. |
Tinken TM, Thijssen DH, Hopkins N, et al. Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension, 2010, 55(2): 312-318.
|
| 72. |
Olher RR, Rosa TS, Souza LHR, et al. Isometric exercise with large muscle mass improves redox balance and blood pressure in hypertensive adults. Med Sci Sports Exerc, 2020, 52(5): 1187-1195.
|
| 73. |
Morita H, Abe M, Suematsu Y, et al. Resistance exercise has an antihypertensive effect comparable to that of aerobic exercise in hypertensive patients: a meta-analysis of randomized controlled trials. Hypertens Res, 2025, 48(2): 733-743.
|
| 74. |
Alemayehu A, Teferi G. Effectiveness of aerobic, resistance, and combined training for hypertensive patients: a randomized controlled trial. Ethiop J Health Sci, 2023, 33(6): 1063-1074.
|
| 75. |
李智恒. 有氧運動聯合抗阻運動對老年原發性高血壓患者的血壓影響: 一項系統綜述和Meta分析//陜西省體育科學學會, 陜西省學生體育協會. 第二屆陜西省體育科學大會論文摘要集(專題一). 2024.
|
| 76. |
劉敏. 有氧運動對肥胖青少年高血壓相關致病因素的影響. 上海: 上海體育學院, 2015.
|
| 77. |
Saco-Ledo G, Valenzuela PL, Ramírez-Jiménez M, et al. Acute aerobic exercise induces short-term reductions in ambulatory blood pressure in patients with hypertension: a systematic review and meta-analysis. Hypertension, 2021, 78(6): 1844-1858.
|