1. |
袁遠宏, 肖政輝. 兒童膿毒性休克早期識別與處理. 實用休克雜志(中英文), 2022, 6(3): 137-140, 145.
|
2. |
Weiss SL, Fitzgerald JC, Pappachan J, et al. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med, 2015, 191(10): 1147-1157.
|
3. |
Gavelli F, Castello LM, Avanzi GC, et al. Management of sepsis and septic shock in the emergency department. Intern Emerg Med, 2021, 16(6): 1649-1661.
|
4. |
施春柳, 黃曉波, 何有美, 等. 兒童早期預警評分對膿毒癥患兒病情及短期預后的臨床預測. 中國醫藥科學, 2021, 11(11): 190-193.
|
5. |
張芳. 降鈣素原D-二聚體聯合小兒危重病例評分在小兒膿毒癥診斷及預后的臨床應用價值. 中國藥物與臨床, 2020, 20(5): 757-758.
|
6. |
Zhong M, Huang Y, Li T, et al. Day-1 PELOD-2 and day-1 "quick" PELOD-2 scores in children with sepsis in the PICU. J Pediatr, 2020, 96: 660-665.
|
7. |
方建, 劉賓賓, 陳超. 不同臨床評分在預測膿毒血癥患兒死亡風險中的應用價值. 現代實用醫學, 2021, 33(6): 791-793.
|
8. |
Lalitha AV, Satish JK, Reddy M, et al. Sequential organ failure assessment score as a predictor of outcome in sepsis in pediatric intensive care unit. J Pediatr Intensive Care, 2021, 10(2): 110-117.
|
9. |
Cabrita JA, Pinheiro I, Falc?o LM, et al. Rethinking the concept of sepsis and septic shock. Eur J Intern Med, 2018, 54: 1-5.
|
10. |
張麗丹, 黃慧敏, 程玉才, 等. 4種小兒危重死亡評分對危重患兒死亡風險的預測價值. 中華危重病急救醫學, 2018, 30(1): 51-56.
|
11. |
Senthilkumar G, Madhusudhana S, Flitcroft M, et al. Automated machine learning (AutoML) can predict 90-day mortality after gastrectomy for cancer. Sci Rep, 2023, 13(1): 11051.
|
12. |
Greener JG, Kandathil SM, Moffat L, et al. A guide to machine learning for biologists. Nat Rev Mol Cell Biol, 2022, 23(1): 40-55.
|
13. |
Nichols JA, Herbert Chan HW, Baker MA, et al. Machine learning: applications of artificial intelligence to imaging and diagnosis. Biophys Rev, 2019, 11(1): 111-118.
|
14. |
Debray TPA, Damen JAA, Snell KIE, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ, 2017: i6460.
|
15. |
Fu H, Hou D, Xu R, et al. Risk prediction models for deep venous thrombosis in patients with acute stroke: a systematic review and meta-analysis. Int J Nurs Stud, 2024, 149: 104623.
|
16. |
鄧宇含, 劉爽, 王子堯, 等. 基于結構化數據和機器學習模型預測普通人群卒中發病風險的系統評價和meta分析. 中國卒中雜志, 2022, 17(11): 1189-1197.
|
17. |
Newcombe RG. Confidence intervals for an effect size measure based on the Mann–Whitney statistic. Part 2: asymptotic methods and evaluation. Stat Med, 2006, 25(4): 559-573.
|
18. |
Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 1982, 143(1): 29-36.
|
19. |
The pediatric sepsis biomarker risk model. 2024.
|
20. |
Wong HR, Cvijanovich NZ, Anas N, et al. Prospective testing and redesign of a temporal biomarker based risk model for patients with septic shock: implications for septic shock biology. EBioMedicine, 2015, 2(12): 2087-2093.
|
21. |
Le S, Hoffman J, Barton C, et al. Pediatric severe sepsis prediction using machine learning. Front Pediatr, 2019, 7: 413.
|
22. |
Ying J, Wang Q, Xu T, et al. Diagnostic potential of a gradient boosting-based model for detecting pediatric sepsis. Genomics, 2021, 113(1 Pt 2): 874-883.
|
23. |
龔軍, 鐘小鋼, 談軍濤, 等. “網格搜索+XGBoost”算法建立兒童膿毒性休克預測模型. 解放軍醫學雜志, 2020, 45(12): 1270-1276.
|
24. |
Xiang L, Wang H, Fan S, et al. Machine learning for early warning of septic shock in children with hematological malignancies accompanied by fever or neutropenia: a single center retrospective study. Front Oncol, 2021, 11: 678743.
|
25. |
楊春鳳. 吉林省兒童膿毒性休克調查和死亡預測模型的建立與個體化治療探索. 長春: 吉林大學, 2023.
|
26. |
查皓宇, 譚睿, 王浩楠, 等. 兒童重癥細菌感染死亡風險預測模型的建立及評價. 中華急診醫學雜志, 2023, 32(4): 489-496.
|
27. |
Scott HF, Colborn KL, Sevick CJ, et al. Development and validation of a predictive model of the risk of pediatric septic shock using data known at the time of hospital arrival. J Pediatr, 2020, 217: 145-151.
|
28. |
Liu R, Greenstein JL, Fackler JC, et al. Prediction of impending septic shock in children with sepsis. Crit Care Explor, 2021, 3(6): e0442.
|
29. |
朱雪梅, 陳申成, 章瑩瑩, 等. 基于多中心隊列數據的機器學習預測重癥感染患兒死亡風險和篩選臨床特征的研究. 中國循證兒科雜志, 2024, 19(1): 31-35.
|
30. |
Machine Learning in Medicine. Circulation, 2024.
|
31. |
Ahmad A, Imran M, Ahsan H, et al. Biomarkers as biomedical bioindicators: approaches and techniques for the detection, analysis, and validation of novel biomarkers of diseases. Pharmaceutics, 2023, 15(6): 1630.
|
32. |
Li Y, Sperrin M, Ashcroft DM, et al. Consistency of variety of machine learning and statistical models in predicting clinical risks of individual patients: longitudinal cohort study using cardiovascular disease as exemplar. BMJ, 2020, 371.
|
33. |
Andaur Navarro CL, Damen JAA, Takada T, et al. Protocol for a systematic review on the methodological and reporting quality of prediction model studies using machine learning techniques. BMJ Open, 2020, 10(11): e038832.
|
34. |
Carrol ED, Ranjit S, Menon K, et al. Operationalizing appropriate sepsis definitions in children worldwide: considerations for the pediatric sepsis definition taskforce. Pediatr Crit Care Med, 2023, 24(6): e263.
|