1. |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin, 2022, 72(1): 7-33.
|
2. |
Watling CZ, Schmidt JA, Dunneram Y, et al. Risk of cancer in regular and low meat-eaters, fish-eaters, and vegetarians: a prospective analysis of UK Biobank participants. BMC Med, 2022, 20(1): 73.
|
3. |
Kang DW, Fairey AS, Boulé NG, et al. A randomized trial of the effects of exercise on anxiety, fear of cancer progression and quality of life in prostate cancer patients on active surveillance. J Urol, 2022, 207(4): 814-822.
|
4. |
Kim JS, Wilson RL, Taaffe DR, et al. Myokine expression and tumor-suppressive effect of serum after 12 wk of exercise in prostate cancer patients on ADT. Med Sci Sports Exerc, 2022, 54(2): 197-205.
|
5. |
Lim JE, Huang J, M?nnist? S, et al. Hair dye use and prostate cancer risk: a prospective analysis in the Alpha-Tocopherol, Beta-Carotene cancer prevention study cohort. Cancer, 2022, 128(6): 1260-1266.
|
6. |
Brookman-May SD, Campi R, Henríquez JDS, et al. Latest evidence on the impact of smoking, sports, and sexual activity as modifiable lifestyle risk factors for prostate cancer incidence, recurrence, and progression: a systematic review of the literature by the European association of urology section of oncological urology (ESOU). Eur Urol Focus, 2019, 5(5): 756-787.
|
7. |
Sandhu S, Moore CM, Chiong E, et al. Prostate cancer. Lancet, 2021, 398(10305): 1075-1090.
|
8. |
Rebello RJ, Oing C, Knudsen KE, et al. Prostate cancer. Nat Rev Dis Primers, 2021, 7(1): 9.
|
9. |
Arap W, Pasqualini R, Costello JF. Prostate cancer progression and the epigenome. N Engl J Med, 2020, 383(23): 2287-2290.
|
10. |
Kibel AS, Jin CH, Klim A, et al. Association between polymorphisms in cell cycle genes and advanced prostate carcinoma. Prostate, 2008, 68(11): 1179-1186.
|
11. |
Mandal RK, Mittal RD. Are cell cycle and apoptosis genes associated with prostate cancer risk in North Indian population. Urol Oncol, 2012, 30(5): 555-561.
|
12. |
Stoehr R, Hitzenbichler F, Kneitz B, et al. MDM2-SNP309 polymorphism in prostate cancer: no evidence for association with increased risk or histopathological tumour characteristics. Br J Cancer, 2008, 99(1): 78-82.
|
13. |
Hirata H, Hinoda Y, Kikuno N, et al. Bcl2 -938C/A polymorphism carries increased risk of biochemical recurrence after radical prostatectomy. J Urol, 2009, 181(4): 1907-1912.
|
14. |
Zeng X, Zhang Y, Kwong JS, et al. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J Evid Based Med, 2015, 8(1): 2-10.
|
15. |
Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol, 2010, 25(9): 603-605.
|
16. |
曾憲濤, 劉慧, 陳曦, 等. Meta分析系列之四: 觀察性研究的質量評價工具. 中國循證心血管醫學雜志, 2012, 4(4): 297-299.
|
17. |
曾憲濤, Kwong JW, 田國祥, 等. Meta分析系列之二: Meta分析的軟件. 中國循證心血管醫學雜志, 2012, 4(2): 89-91.
|
18. |
Weng H, Li S, Huang JY, et al. Androgen receptor gene polymorphisms and risk of prostate cancer: a meta-analysis. Sci Rep, 2017, 7: 40554.
|
19. |
賀藝, 劉菊芳, 龔青, 等. 血管緊張素原基因T174M多態性與子癇前期發病風險相關性的Meta分析. 中國循證心血管醫學雜志, 2017, 9(1): 10-13.
|
20. |
徐文斌, 龔乘丙, 李堯, 等. p53 codon 72基因多態性與中國女性乳腺癌發生風險關系的系統評價與Meta分析. 醫學新知, 2022, 32(1): 23-32.
|
21. |
Zhou J, Wu H, Su QX, et al. Impacts of chemokine (C-X-C Motif) receptor 2 C1208T polymorphism on cancer susceptibility. J Immunol Res, 2021, 2021: 8727924.
|
22. |
Xu B, Xu Z, Cheng G, et al. Association between polymorphisms of TP53 and MDM2 and prostate cancer risk in southern Chinese. Cancer Genet Cytogenet, 2010, 202(2): 76-81.
|
23. |
Knappskog S, Trovik J, Marcickiewicz J, et al. SNP285C modulates oestrogen receptor/Sp1 binding to the MDM2 promoter and reduces the risk of endometrial but not prostatic cancer. Eur J Cancer, 2012, 48(13): 1988-1996.
|
24. |
Gansmo LB, Knappskog S, Romundstad P, et al. Influence of MDM2 SNP309 and SNP285 status on the risk of cancer in the breast, prostate, lung and colon. Int J Cancer, 2015, 137(1): 96-103.
|
25. |
Xue L, Han X, Liu R, et al. MDM2 and P53 polymorphisms contribute together to the risk and survival of prostate cancer. Oncotarget, 2016, 7(22): 31825-31831.
|
26. |
慕玉東, 郝妮娜, 原榮, 等. MDM2 T309G 基因多態性與前列腺癌的相關性. 現代腫瘤醫學, 2020, 28(4): 614-616.
|
27. |
Sivonova MK, Jurecekova J, Kaplan P, et al. Association of MDM2 T309G (rs2279744) polymorphism and expression changes with risk of prostate cancer in the Slovak population. Anticancer Res, 2020, 40(11): 6257-6264.
|
28. |
鄧通, 蔡林, 陳征, 等. 1990年與2017年中國前列腺癌疾病負擔分析. 醫學新知, 2020, 30(4): 252-259.
|
29. |
羅麗莎, 欒航航, 鄭航, 等. 中國1990-2019年歸因于吸煙的前列腺癌、膀胱癌和腎癌疾病負擔研究. 中國循證醫學雜志, 2022, 22(5): 530-536.
|
30. |
Cahilly-Snyder L, Yang-Feng T, Francke U, et al. Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somat Cell Mol Genet, 1987, 13(3): 235-244.
|
31. |
Klein AM, de Queiroz RM, Venkatesh D, et al. The roles and regulation of MDM2 and MDMX: it is not just about p53. Genes Dev, 2021, 35(9-10): 575-601.
|
32. |
Jones SN, Roe AE, Donehower LA, et al. Rescue of embryonic lethality in MDM2-deficient mice by absence of p53. Nature, 1995, 378(6553): 206-208.
|
33. |
Duan Y, Ma G, Huang X, et al. The clustered, regularly interspaced, short palindromic repeats-associated endonuclease 9 (CRISPR/Cas9)-created MDM2 T309G mutation enhances vitreous-induced expression of MDM2 and proliferation and survival of cells. J Biol Chem, 2016, 291(31): 16339-16347.
|
34. |
Yadav P, Masroor M, Tanwer K, et al. Clinical significance of TP53 (R72P) and MDM2 (T309G) polymorphisms in breast cancer patients. Clin Transl Oncol, 2016, 18(7): 728-734.
|
35. |
Tian X, Wang B, Guo J, et al. The MDM2 T309G polymorphism and risk of lung cancer: an updated meta-analysis of 10 186 cases and 14 155 controls. Panminerva Med, 2016, 58(4): 341-348.
|