Rolling enrollment is a common method for participant recruitment in medical practice. In the longitudinal data, where researchers are often interested in outcomes occurring after a certain period of treatment, the definition of causal effects differs from that in the cross-sectional data. It poses new challenges for the application of matching methods in the longitudinal studies. Longitudinal matching is an extension of matching methods in longitudinal studies involving static interventions such as rolling enrollment. Currently, longitudinal matching methods are widely applied in the comparative effectiveness research. This article elucidates the fundamental principles, applicable conditions, code implementation, and application instances of four longitudinal matching methods through theoretical discussions and empirical illustrations. It provides methodological references for estimating causal effects in longitudinal data analysis.
Citation:
YANG Rongzhen, GUO Siwen. Application of longitudinal matching in causal inference for rolling enrollment interventions. Chinese Journal of Evidence-Based Medicine, 2024, 24(6): 730-738. doi: 10.7507/1672-2531.202310083
Copy
Copyright ? the editorial department of Chinese Journal of Evidence-Based Medicine of West China Medical Publisher. All rights reserved
1. |
|
2. |
|
3. |
|
4. |
|
5. |
|
6. |
|
7. |
|
8. |
Hernán MA, Robins JM. Causal inference: what if. Boca Raton: Chapman & Hall/CRC. , 2020.
|
9. |
|
10. |
鄭全慶. 臨床流行病學. 西安: 西安交通大學出版社, 2007.
|
11. |
|
12. |
郭申陽, Fraser MW. 傾向值分析: 統計方法與應用. 重慶: 重慶大學出版社, 2012.
|
13. |
|
14. |
|
15. |
|
16. |
邱嘉平. 因果推斷實用計量方法. 上海: 上海財經大學出版社, 2020.
|
17. |
|
18. |
|
19. |
|
20. |
|
21. |
|
22. |
|
23. |
|
24. |
|
25. |
|
26. |
|
27. |
|
28. |
|
29. |
|
30. |
Rosenbaum PR. Observational studies. New York: Springer, 2002.
|
31. |
Sun Y. New matching algorithm: outlier first matching (OFM) and its performance on propensity score analysis (PSA) under new stepwise matching framework (SMF). New York: State University of New York at Albany, 2014.
|
32. |
|
33. |
|
34. |
|
35. |
Keane MH. The impact of online art therapy groups for pediatric rheumatology patients. Rheumatology, 2022, 61(Sup 1): c133-c168.
|
36. |
|
37. |
|
38. |
|
39. |
|
40. |
|
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8. Hernán MA, Robins JM. Causal inference: what if. Boca Raton: Chapman & Hall/CRC. , 2020.
- 9.
- 10. 鄭全慶. 臨床流行病學. 西安: 西安交通大學出版社, 2007.
- 11.
- 12. 郭申陽, Fraser MW. 傾向值分析: 統計方法與應用. 重慶: 重慶大學出版社, 2012.
- 13.
- 14.
- 15.
- 16. 邱嘉平. 因果推斷實用計量方法. 上海: 上海財經大學出版社, 2020.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30. Rosenbaum PR. Observational studies. New York: Springer, 2002.
- 31. Sun Y. New matching algorithm: outlier first matching (OFM) and its performance on propensity score analysis (PSA) under new stepwise matching framework (SMF). New York: State University of New York at Albany, 2014.
- 32.
- 33.
- 34.
- 35. Keane MH. The impact of online art therapy groups for pediatric rheumatology patients. Rheumatology, 2022, 61(Sup 1): c133-c168.
- 36.
- 37.
- 38.
- 39.
- 40.