1. |
丁鵬. 因果推斷—現代統計的思想飛躍. 數學文化, 2021, 12(2): 51-67.
|
2. |
Hernán MA, Robins JM. Causal inference: what if. Boca Raton: Chapman & Hall, 2020.
|
3. |
Baumfeld Andre E, Reynolds R, Caubel P, et al. Trial designs using real-world data: the changing landscape of the regulatory approval process. Pharmacoepidemiol Drug Saf, 2020, 29(10): 1201-1212.
|
4. |
盧存存, 陳子佳, 張強, 等. 基于真實世界數據的目標試驗模擬研究: 現狀與展望. 中國循證醫學雜志, 2023, 23(4): 492-496.
|
5. |
Fu EL. Target trial emulation to improve causal inference from observational data: what, why, and how. J Am Soc Nephrol, 2023, 34(8): 1305-1314.
|
6. |
Gehrmann J, Herczog E, Decker S, et al. What prevents us from reusing medical real-world data in research. Sci Data, 2023, 10(1): 459.
|
7. |
Taylor SP, Kowalkowski MA, Admon AJ. Timing is everything. the importance of alignment of time anchors for observational causal inference research. Ann Am Thorac Soc, 2021, 18(5): 769-772.
|
8. |
Schneeweiss S, Rassen JA, Brown JS, et al. Graphical depiction of longitudinal study designs in health care databases. Ann Intern Med, 2019, 170(6): 398-406.
|
9. |
He W, Fang Y, Wang H. Real-world evidence in medical product development. Cham: Springer, 2023.
|
10. |
Bykov K, Patorno E, D'Andrea E, et al. Prevalence of avoidable and bias-inflicting methodological pitfalls in real-world studies of medication safety and effectiveness. Clin Pharmacol Ther, 2022, 111(1): 209-217.
|
11. |
Zhao R, Zhang W, Zhang Z, et al. Evaluation of reporting quality of cohort studies using real-world data based on RECORD: systematic review. BMC Med Res Methodol, 2023, 23(1): 152.
|
12. |
Wang W, Liu M, He Q, et al. Data source profile reporting by studies that use routinely collected health data to explore the effects of drug treatment. BMC Med Res Methodol, 2023, 23(1): 95.
|
13. |
Hernán MA, Robins JM. Using big data to emulate a target trial when a randomized trial is not available. Am J Epidemiol, 2016, 183(8): 758-764.
|
14. |
St MA, Robins JM. Using Big Data et al. Methodological considerations when analysing and interpreting real-world data. Rheumatology (Oxford), 2020, 59(1): 14-25.
|
15. |
Hernán MA. How to estimate the effect of treatment duration on survival outcomes using observational data. BMJ, 2018, 360: k182.
|
16. |
Mlcoch T, Hrnciarova T, Tuzil J, et al. Propensity score weighting using overlap weights: a new method applied to regorafenib clinical data and a cost-effectiveness analysis. Value Health, 2019, 22(12): 1370-1377.
|
17. |
Schneeweiss S, Patorno E. Conducting real-world evidence studies on the clinical outcomes of diabetes treatments. Endocr Rev, 2021, 42(5): 658-690.
|
18. |
趙駿, 王駿. 應用模擬目標臨床試驗概念設計觀察性研究時的若干考慮. 中國新藥雜志, 2022, 31(18): 1801-1803.
|
19. |
De Stavola BL, Gomes M, Katsoulis M. Transparency and rigor: target trial emulation aims to achieve both. Epidemiology, 2023, 34(5): 624-626.
|
20. |
石舒原, 劉佐相, 趙厚宇, 等. 真實世界證據與隨機對照試驗: RCTDUPLICATE項目啟動、實施、進展解讀與啟示(一). 中華流行病學雜志, 2022, 43(11): 1828-1834.
|
21. |
Wang SV, Schneeweiss S, , et al. Emulation of randomized clinical trials with nonrandomized database analyses: results of 32 clinical trials. JAMA, 2023, 329(16): 1376-1385.
|
22. |
中國國家藥監局藥品審評中心(CDE). 《藥物真實世界研究設計與方案框架指導原則(試行)》. 2023.
|
23. |
Mohyuddin GR, Prasad V. Detecting selection bias in observational studies-when interventions work too fast. JAMA Intern Med, 2023, 183(9): 897-898.
|
24. |
Zhang Y, Thamer M, Kshirsagar O, et al. Comparative effectiveness research based on observational data to emulate a target trial. Medical Technology and Practice Patterns Institute, 2019.
|
25. |
Pilleron S, Maringe C, Morris EJA, et al. Immortal-time bias in older vs younger age groups: a simulation study with application to a population-based cohort of patients with colon cancer. Br J Cancer, 2023, 128(8): 1521-1528.
|
26. |
Ho M, Gruber S, Fang Y, et al. Examples of applying RWE causal-inference roadmap to clinical studies. Stat Biopharm Res, 2023, 15(3): 1-14.
|
27. |
Wang SV, Sreedhara SK, Bessette LG, et al. Understanding variation in the results of real-world evidence studies that seem to address the same question. J Clin Epidemiol, 2022, 151: 161-170.
|
28. |
Yu OHY, Suissa S. Metformin and cancer: solutions to a real-world evidence failure. Diabetes Care, 2023, 46(5): 904-912.
|
29. |
Koro M, Wolgemuth J, Trinh E. Reducing methodological footprints in qualitative research. Qualitative Inquiry, 2023.
|
30. |
Quann N, Burns S, Hull KL, et al. Reducing the carbon footprint of research: experience from the NightLife study. BMJ Open, 2023, 13(4): e070200.
|
31. |
Saldarriaga EM, Hauber B, Carlson JJ, et al. Assessing payers' preferences for real-world evidence in the united states: a discrete choice experiment. Value Health, 2022, 25(3): 443-450.
|
32. |
Wolfson J, Venkatasubramaniam A. Best (but often forgotten) statistical practices: measuring real-world intervention effectiveness using electronic health data. Am J Clin Nutr, 2023, 118(1): 13-22.
|
33. |
Hulme WJ, Williamson E, Horne EMF, et al. Challenges in estimating the effectiveness of COVID-19 vaccination using observational data. Ann Intern Med, 2023, 176(5): 685-693.
|
34. |
Moler-Zapata S, Hutchings A, O'Neill S, et al. Emulating target trials with real-world data to inform health technology assessment: findings and lessons from an application to emergency surgery. Value Health, 2023, 26(8): 1164-1174.
|
35. |
盧存存, 陳子佳, 王志飛. 基于真實世界數據的觀察性因果推斷研究新框架(目標試驗模擬)及其在中醫藥領域中的應用展望. 協和醫學雜志, 2023.
|