- 1. Center for Evidence Based Chinese Medicine, Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China;
- 2. Department of Clinical Epidemiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P. R. China;
Citation: JING Chengyang, FENG Lin, LI Jiachen, LIANG Lirong, LIAO Xing. Methodological quality evaluation on clinical prediction models of traditional Chinese medicine: a systematic review. Chinese Journal of Evidence-Based Medicine, 2024, 24(3): 312-321. doi: 10.7507/1672-2531.202307071 Copy
Copyright ? the editorial department of Chinese Journal of Evidence-Based Medicine of West China Medical Publisher. All rights reserved
1. | Moons KG, Royston P, Vergouwe Y, et al. Prognosis and prognostic research: what, why, and how. BMJ, 2009, 338: b375. |
2. | Bouwmeester W, Zuithoff NP, Mallett S, et al. Reporting and methods in clinical prediction research: a systematic review. PLoS Med, 2012, 9(5): 1-12. |
3. | Steyerberg EW, Moons KG, van der Windt DA, et al. Prognosis research strategy (PROGRESS) 3: prognostic model research. PLoS Med, 2013, 10(2): e1001381. |
4. | Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J, 2014, 35(29): 1925-1931. |
5. | Wolff RF, Moons KGM, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med, 2019, 170(1): 51-58. |
6. | Moons KGM, Wolff RF, Riley RD, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration. Ann Intern Med, 2019, 170(1): 1-33. |
7. | Andaur Navarro CL, Damen JAA, Takada T, et al. Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review. BMJ, 2021, 375: n2281. |
8. | Chu H, Moon S, Park J, et al. The use of artificial intelligence in complementary and alternative medicine: a systematic scoping review. Front Pharmacol, 2022, 13: 826044. |
9. | Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med, 2014, 11(10): e1001744. |
10. | 張馨心, 呂曉東, 龐立健, 等. 基于機器學習的特發性肺纖維化氣陰兩虛兼血瘀證診斷模型研究. 遼寧中醫藥大學學報, 2023, 25(2): 191-196. |
11. | 姚帥君, 閆敬來, 杜彩鳳, 等. 基于集成學習構建圍絕經期綜合征中醫智能診斷模型. 中醫雜志, 2023, 64(6): 572-580. |
12. | 孫聰, 戴國華, 管慧, 等. 基于決策樹算法的慢性心力衰竭患者中西醫預后模型構建及驗證. 中國中醫基礎醫學雜志, 2023, 29(1): 120-126. |
13. | 黃少鵬, 姚衍竹. 不同中醫體質聯合肺功能參數的小兒咳嗽變異性哮喘的臨床預測. 四川中醫, 2023, 41(2): 86-90. |
14. | 高明友, 潘賜明, 丁家雯. 胃癌患者的中醫證素分布及與病情嚴重程度的相關性研究. 廣州中醫藥大學學報, 2023, 40(4): 802-806. |
15. | 高靜, 陳瓊華, 何曉銘, 等. 基于中醫證型的人工全膝關節置換術后慢性疼痛的危險因素探究及風險預測模型構建. 廣州中醫藥大學學報, 2023, 40(3): 549-555. |
16. | 董興魯, 高穎, 唐璐, 等. 基于多元Logistic回歸的缺血性中風病恢復期腎虛證證候診斷模型研究. 現代中醫臨床, 2023, 30(1): 26-30. |
17. | 陳玄, 葉云金, 陳娟, 等. 絕經后女性中醫癥候群骨質疏松風險預測工具構建. 中國骨質疏松雜志, 2023, 29(3): 356-360. |
18. | Liu X, Huang X, Zhao J, et al. Application of machine learning in Chinese medicine differentiation of dampness-heat pattern in patients with type 2 diabetes mellitus. Heliyon, 2023, 9(2): e13289. |
19. | 朱玲, 鄭婉婷, 張竹綠, 等. 基于卷積神經網絡的潰瘍性結腸炎證候預測模型研究. 中國數字醫學, 2022, 17(4): 49-55. |
20. | 張曉蘭, 方桂珍, 楊丹華, 等. 中老年女性腎陽虛型壓力性尿失禁風險預測模型的構建. 護理與康復, 2022, 21(7): 1-5. |
21. | 張夢楚, 趙倩倩, 解天驍, 等. 基于脈圖參數構建原發性高血壓患者伴左心室肥厚的風險預測列線圖模型. 中國中醫藥信息雜志, 2022, 29(8): 116-122. |
22. | 楊繼, 張垚, 高晟瑋, 等. 預測高血壓病患者合并慢性腎臟病風險的列線圖模型構建. 天津中醫藥, 2022, 39(3): 295-302. |
23. | 夏庭偉, 李煒弘, 丁維俊, 等. 2型糖尿病并發腎病中西醫多模態特征融合預測模型構建. 中華中醫藥雜志, 2022, 37(7): 4116-4120. |
24. | 王中瑞, 符宇, 趙瑞霞, 等. 糖尿病合并穩定型心絞痛患者發生主要不良心腦血管事件的中醫預測模型構建及應用評估研究. 中國全科醫學, 2022, 25(20): 2450-2456. |
25. | 王麗丹, 劉可可, 王永祥, 等. 中醫體質類型與阿爾茨海默病關系的研究. 中華行為醫學與腦科學雜志, 2022, 31(6): 541-547. |
26. | 田之魁, 張鑫海, 孫璇, 等. 基于舌象的糖尿病足風險預測模型的構建. 中醫雜志, 2022, 63(19): 1840-1846. |
27. | 唐艷芳, 劉旭東, 呂萍, 等. 基于BP神經網絡、隨機森林和決策樹建立早期慢性乙型病毒性肝炎肝硬化無創診斷模型. 重慶醫學, 2022, 51(7): 1161-1166. |
28. | 任麗麗, 戴國華, 高武霖, 等. 基于Lasso-Cox回歸評價中醫藥干預在慢性心力衰竭患者預后中的治療價值. 中華中醫藥雜志, 2022, 37(10): 6000-6005. |
29. | 李軍, 胡曉娟, 周昌樂, 等. 基于隨機森林算法的糖尿病舌象特征分析和診斷模型研究. 中華中醫藥雜志, 2022, 37(3): 1639-1643. |
30. | 賈文, 尹瑩, 余晗, 等. 基于決策樹模型的中西結合診療模式下新型冠狀病毒感染住院患者死亡風險因素分析. 亞太傳統醫藥, 2022, 18(7): 68-74. |
31. | 洪敏萍, 周長玉, 卜陽陽, 等. 基于多參數MRI影像組學特征預測肉芽腫性乳腺炎中醫證型的研究. 浙江中醫藥大學學報, 2022, 46(5): 483-489. |
32. | 樊佳賽, 杜藝菲, 許佳穎, 等. 基于中醫證候和機器學習構建慢性心力衰竭中西醫結合預后模型. 基礎醫學與臨床, 2022, 42(8): 1169-1175. |
33. | 段紹杰, 劉尊敬, 陳佳良, 等. 成人非酒精性脂肪性肝病患者ALT升高的危險因素分析及預測模型建立. 海南醫學院學報, 2022, 28(4): 263-268. |
34. | 崔偉鋒, 林萍, 劉蕭蕭, 等. 基于機器學習的原發性高血壓心血管風險預后模型. 中國老年學雜志, 2022, 42(15): 3625-3629. |
35. | 車前子, 王晶, 白衛國, 等. 基于LASSO回歸的骨質疏松腎陽虛狀態辨識模型研究. 中華中醫藥雜志, 2022, 37(10): 5928-5933. |
36. | Yang J, Chen L, Cai S, et al. Prediction of H-type hypertension based on pulse-taking and inquiry diagnosis. Biomed Signal Process Control, 2022, 75: 103723. |
37. | Wang W, Zeng W, Chen X, et al. Parameter study on characteristic pulse diagram of polycystic ovary syndrome based on logistic regression analysis. J Obstet Gynaecol, 2022, 42(8): 3712-3719. |
38. | Tang M, Gao L, He B, et al. Machine learning based prognostic model of Chinese medicine affecting the recurrence and metastasis of Ⅰ-Ⅲ stage colorectal cancer: a retrospective study in China. Front Oncol, 2022, 12: 1044344. |
39. | Luo B, Yang M, Han Z, et al. Establishment of a nomogram-based prognostic model (LASSO-COX Regression) for predicting progression-free survival of primary non-small cell lung cancer patients treated with adjuvant chinese herbal medicines therapy: a retrospective study of case series. Front Oncol, 2022, 12: 882278. |
40. | Huang Z, Miao J, Chen J, et al. A traditional Chinese medicine syndrome classification model based on cross-feature generation by convolution neural network: model development and validation. JMIR Med Inform, 2022, 10(4): e29290. |
41. | Filist S, Al-Kasasbeh RT, Shatalova O, et al. Biotechnical system based on fuzzy logic prediction for surgical risk classification using analysis of current-voltage characteristics of acupuncture points. J Integr Med, 2022, 20(3): 252-264. |
42. | Cheng B, Ma J, Chen X, et al. Objective study of the facial parameters of observations in patients with type 2 diabetes mellitus by machine learning. Ann Transl Med, 2022, 10(18): 960. |
43. | 朱兆鑫, 楊珊珊, 彭安杰, 等. 基于自適應矩估計的BP神經網絡對中醫痛經證型分類的研究. 世界科學技術-中醫藥現代化, 2021, 23(12): 4560-4568. |
44. | 周淑珍, 張燕媚, 何志仁, 等. 基于中醫藥治療的糖尿病腎病風險預測模型構建與驗證. 時珍國醫國藥, 2021, 32(6): 1505-1509. |
45. | 章軼立, 譚楠楠, 劉俊杰, 等. 基本證候視角下的慢性心力衰竭關聯因素篩選及判別模型構建: 一項多中心橫斷面研究. 中華中醫藥雜志, 2021, 36(6): 3205-3208. |
46. | 葉樺, 何黎, 胡遠樟, 等. 基于卷積神經網絡的2型糖尿病證候分布演化規律研究. 時珍國醫國藥, 2021, 32(6): 1522-1524. |
47. | 楊敏, 王君, 牛文全, 等. 兒童偏矮身材的中醫體質分布及風險預測模型構建. 安徽中醫藥大學學報, 2021, 40(6): 29-36. |
48. | 楊慧婷, 蔣金蘭, 金林珍, 等. 針灸治療中風恢復期臨床預測模型的建立和分析. 中國針灸, 2021, 41(8): 855-860. |
49. | 熊夢欣, 曾明星, 周廣文, 等. 亞急性甲狀腺炎肝經郁熱證量化診斷標準的初探. 中國中醫急癥, 2021, 30(9): 1527-1531. |
50. | 王志武, 劉春秋, 王靜, 等. 放射性肺損傷肺癌病證結合預測模型的構建和驗證. 中華中醫藥雜志, 2021, 36(9): 5556-5560. |
51. | 王鈺涵, 段鵬喆, 張鑫, 等. 基于決策樹和神經網絡的高血壓病危險因素研究. 世界科學技術-中醫藥現代化, 2021, 23(8): 2784-2794. |
52. | 孫千惠, 李婷婷, 王曉燕, 等. 肺脾兩虛型支氣管哮喘診斷預測模型研究. 中醫藥導報, 2021, 27(1): 79-81. |
53. | 劉超, 高嘉良, 董艷, 等. 基于BP神經網絡的冠狀動脈臨界病變患者證候要素及其常見組合中醫辨證診斷模型研究. 中國中醫藥信息雜志, 2021, 28(3): 104-110. |
54. | 李妍, 彭心怡, 孔燕妮, 等. 免疫檢查點抑制劑療效預測分析及結合中醫證型的Nomogram圖構建. 浙江中西醫結合雜志, 2021, 31(8): 721-725. |
55. | 葛修芹, 張金山, 張忠誠. 類風濕性關節炎并間質性肺病的影響因素分析及其風險預測列線圖模型構建研究. 實用心腦肺血管病雜志, 2021, 29(9): 53-58. |
56. | 曹云, 舒鑫, 張丹莉, 等. 急性缺血性腦卒中氣虛證列線圖預測模型的構建. 中華中醫藥雜志, 2021, 36(4): 1939-1944. |
57. | Zhao T, Yang X, Wan R, et al. Study of TCM syndrome identification modes for patients with type 2 diabetes mellitus based on data mining. Evid Based Complement Alternat Med, 2021, 2021: 5528550. |
58. | Xia SJ, Gao BZ, Wang SH, et al. Modeling of diagnosis for metabolic syndrome by integrating symptoms into physiochemical indexes. Biomed Pharmacother, 2021, 137: 111367. |
59. | Xi X, Fu Z, Liu T, et al. Establishment and verification of scoring system for colorectal adenoma recurrence. Risk Manag Healthc Policy, 2021, 14: 4545-4552. |
60. | Wu J, Hu R, Li M, et al. Diagnosis of sleep disorders in traditional Chinese medicine based on adaptive neuro-fuzzy inference system. Biomed Signal Process Control, 2021, 70: 102334. |
61. | Wang Y, Zhang R, Pi M, et al. Correlation between TCM syndromes and type 2 diabetic comorbidities based on fully connected neural network prediction model. Evid Based Complement Alternat Med, 2021, 2021: 6095476. |
62. | Shi YL, Liu JY, Hu XJ, et al. A new method for syndrome classification of non-small-cell lung cancer based on data of tongue and pulse with machine learning. Biomed Res Int, 2021, 2021: 1337558. |
63. | Li J, Yuan P, Hu X, et al. A tongue features fusion approach to predicting prediabetes and diabetes with machine learning. J Biomed Inform, 2021, 115: 103693. |
64. | Li J, Chen Q, Hu X, et al. Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques. Int J Med Inform, 2021, 149: 104429. |
65. | Guan H, Dai GH, Gao WL, et al. A 5-year survival prediction model for chronic heart failure patients induced by coronary heart disease with traditional Chinese medicine intervention. Evid Based Complement Alternat Med, 2021, 2021: 4381256. |
66. | Ding L, Zhang XY, Wu DY, et al. Application of an extreme learning machine network with particle swarm optimization in syndrome classification of primary liver cancer. J Integr Med, 2021, 19(5): 395-407. |
67. | 張振, 田雪飛, 郜文輝, 等. 基于決策樹及貝葉斯網絡建立原發性肝癌肝郁脾虛證診斷模型研究. 中國中醫藥信息雜志, 2020, 27(9): 115-120. |
68. | 于李. 神經網絡模型預測老年HBV相關原發性肝癌患者預后研究. 轉化醫學雜志, 2020, 9(5): 296-298, 307. |
69. | 王一葦, 倪寅, 紀超凡, 等. 基于療效影響因素對加味清絡飲治療類風濕性關節炎臨床預測模型與列線圖繪制的初步探索. 中醫藥信息, 2020, 37(6): 82-87. |
70. | 劉超, 陳恒文, 劉蘭椿, 等. 基于多種算法對冠心病不穩定型心絞痛腎虛血瘀證診斷模型的研究. 世界科學技術-中醫藥現代化, 2020, 22(11): 3839-3845. |
71. | 宮文浩, 蘭天瑩, 莫清蓮, 等. 基于決策樹和人工神經網絡的小兒肺炎痰熱閉肺證診斷模型研究. 世界科學技術-中醫藥現代化, 2020, 22(7): 2548-2555. |
72. | 丁亮, 章新友, 劉莉萍, 等. 基于深度神經網絡的原發性肝癌證型診斷分類預測模型. 世界科學技術-中醫藥現代化, 2020, 22(12): 4185-4192. |
73. | 崔偉鋒, 劉蕭蕭, 韓靜旖, 等. 基于隨機森林的原發性高血壓心血管風險預后模型. 中國老年學雜志, 2020, 40(4): 814-816. |
74. | 曾雪元, 宮偉國, 胡云峰, 等. 基于決策樹算法構建缺血性卒中復發的預測模型. 吉林中醫藥, 2020, 40(4): 437-440. |
75. | 安靜, 彭繼升, 魏玥, 等. 胃癌前病變寒熱錯雜證中醫診斷模型的建立. 現代中醫臨床, 2020, 27(1): 12-15. |
76. | Zhao Y, Peng H, Wang S, et al. Clinical analysis of acute coronary syndrome patients with Qi-blood syndromes: establishment of a diagnostic prediction model for syndrome differentiation. Ann Palliat Med, 2020, 9(4): 2096-2110. |
77. | Ren Q, Zhou XW, He MY, et al. A quantitative diagnostic method for phlegm and blood stasis syndrome in coronary heart disease using tongue, face, and pulse indexes: an exploratory pilot study. J Altern Complement Med, 2020, 26(8): 729-737. |
78. | Liu Z, He H, Yan S, et al. End-to-end models to imitate traditional Chinese medicine syndrome differentiation in lung cancer diagnosis: model development and validation. JMIR Med Inform, 2020, 8(6): e17821. |
79. | 趙書穎, 張新雅, 李運倫. 基于決策樹及神經網絡的高血壓病陰陽兩虛證診斷模型的研究. 中華中醫藥學刊, 2019, 37(5): 1120-1123. |
80. | 章軼立, 魏戌, 聶佩蕓, 等. 基于SMOTE算法和決策樹的絕經后骨質疏松性骨折分類模型建構. 中國骨質疏松雜志, 2019, 25(1): 1-5. |
81. | 徐鈺瑩, 張文麗, 楊宇飛, 等. 晚期結直腸癌中醫藥干預治療療效預測模型的建立與應用. 世界科學技術-中醫藥現代化, 2019, 21(7): 1518-1524. |
82. | 舒鑫, 曹云, 黃幸, 等. 基于神經網絡分析技術的急性缺血性卒中氣虛證預測模型構建的研究. 環球中醫藥, 2019, 12(11): 1650-1655. |
83. | 付源峰, 林潔濤, 黃子菁, 等. 中西醫結合治療晚期非小細胞肺癌隊列療效預測模型的建立. 青島大學學報(醫學版), 2019, 55(6): 661-666. |
84. | 章軼立, 魏戌, 聶佩蕓, 等. 基于GroupLasso的Logistic回歸模型構建絕經后骨質疏松性骨折初發風險評估工具. 中國骨質疏松雜志, 2018, 24(8): 994-999. |
85. | 王萍, 史彬, 溫艷東, 等. 胃癌前病變病證結合風險預測模型的構建研究. 中國中西醫結合雜志, 2018, 38(7): 773-778. |
86. | 王娟, 趙慧輝, 陳建新, 等. 基于神經網絡技術分析的慢性心力衰竭血瘀證診斷模型研究. 世界中醫藥, 2018, 13(9): 2122-2126. |
87. | 李靜茹, 馬建萍, 馬秀蘭, 等. Logistic回歸聯合ROC曲線評價中醫癥狀對HIV感染者中醫證型的預測價值. 中華中醫藥雜志, 2018, 33(12): 5627-5629. |
88. | Luo ZY, Cui J, Hu XJ, et al. A study of machine-learning classifiers for hypertension based on radial pulse wave. Biomed Res Int, 2018, 2018: 2964816. |
89. | 卓緣圓, 于海波, 楊卓欣, 等. 不同中醫證型復發腦梗死的眼底血管特征分析及預測模型的建立. 遼寧中醫雜志, 2017, 44(5): 909-913. |
90. | 張赟華, 王益斐, 李國法. 中醫癥狀評分在慢性心功能不全急性加重期患者預后評價中的應用價值及死亡概率模型的建立. 中國中西醫結合急救雜志, 2017, 24(5): 469-472. |
91. | 許明東, 馬曉聰, 溫宗良, 等. 支持向量機在高血壓病中醫證候診斷中的應用. 中華中醫藥雜志, 2017, 32(6): 2497-2500. |
92. | 呂航, 楊秋莉, 杜漸, 等. 基于決策樹預測糖尿病合并冠心病患病風險的中醫人格體質特征研究. 南京中醫藥大學學報, 2017, 33(6): 639-642. |
93. | 呂航, 王昊, 劉媛, 等. 基于決策樹的中醫人格體質對2型糖尿病患者伴發非酒精性脂肪肝病風險的預測研究. 中國中醫基礎醫學雜志, 2017, 23(9): 1257-1259. |
94. | 呂航, 杜漸, 劉媛, 等. 多層感知器模型在中醫人格、體質預測糖尿病性冠心病患病風險中的應用研究. 中國中醫藥信息雜志, 2017, 24(12): 88-91. |
95. | 黃鸝, 梁詠竹, 林立宇, 等. 糖尿病不同階段人群經絡值特點及預測模型的構建. 廣東醫學, 2017, 38(17): 2707-2710. |
96. | Zhao Y, Kang H, Peng JH, et al. Key symptoms selection for two major syndromes diagnosis of Chinese medicine in chronic hepatitis B. Chin J Integr Med, 2017, 23(4): 253-260. |
97. | Zhang J, Xu J, Hu X, et al. Diagnostic method of diabetes based on support vector machine and tongue images. Biomed Res Int, 2017, 2017: 7961494. |
98. | 姚嵐, 方芳. 中西醫聯合構建ACS患者發生心臟事件的預測模型. 世界中西醫結合雜志, 2016, 11(10): 1420-1424,1443. |
99. | 許明東, 馬曉聰, 岳桂華, 等. 基于支持向量機的高血壓中醫證候與血脂、血尿酸、空腹血糖關系的研究. 時珍國醫國藥, 2016, 27(12): 3063-3065. |
100. | 徐瑋斐, 顧巍杰, 劉國萍, 等. 基于隨機森林和多標記學習算法的慢性胃炎實證特征選擇和證候分類識別研究. 中國中醫藥信息雜志, 2016, 23(8): 18-23. |
101. | 王志武, 王靜怡, 胡建, 等. 基于中西醫多模態信息的放射性肺損傷早期預測模型. 中國煤炭工業醫學雜志, 2016, 19(3): 413-417. |
102. | 唐繼云, 李東芳, 侯芳芳, 等. 應用Logistic回歸和ROC曲線探討胃癌脾胃氣虛證中醫診斷模型. 中醫藥導報, 2016, 22(12): 30-34. |
103. | 郭麗穎, 袁晨翼, 賈建偉, 等. HBV-ACLF患者“胃氣”相關預后模型的建立. 中華腫瘤防治雜志, 2016, 23(S1): 143-144, 152. |
104. | Xu J, Xu ZX, Lu P, et al. Classifying syndromes in Chinese medicine using multi-label learning algorithm with relevant features for each label. Chin J Integr Med, 2016, 22(11): 867-871. |
105. | Chi XL, Shi MJ, Xiao HM, et al. The score model containing Chinese medicine syndrome element of blood stasis presented a better performance compared to APRI and FIB-4 in diagnosing advanced fibrosis in patients with chronic hepatitis B. Evid Based Complement Alternat Med, 2016, 2016: 3743427. |
106. | 裘濤, 孔麗婭, 陶水良, 等. 基于神經網絡技術分析的中醫證素研究缺血性腦卒中后抑郁的發生. 中華中醫藥雜志, 2015, 30(10): 3764-3767. |
107. | Kang H, Zhao Y, Li C, et al. Integrating clinical indexes into four-diagnostic information contributes to the traditional Chinese medicine (TCM) syndrome diagnosis of chronic hepatitis B. Sci Rep, 2015, 5: 9395. |
108. | 趙娜, 胡萬華, 陳克龍, 等. 亞健康失眠陰虛火旺型的logistic回歸及判別分析. 中華中醫藥學刊, 2014, 32(10): 2369-2371. |
109. | 許文杰, 劉攀, 燕海霞, 等. 528例冠心病患者中醫脈象非線性動力學特征在證候診斷模型中的應用. 中華中醫藥雜志, 2014, 29(5): 1661-1665. |
110. | Liu GP, Yan JJ, Wang YQ, et al. Deep learning based syndrome diagnosis of chronic gastritis. Comput Math Methods Med, 2014, 2014: 938350. |
111. | 陳瀟雨, 馬利莊, 胡義揚. 基于決策樹方法的慢性乙型肝炎中醫證候分類. 上海中醫藥大學學報, 2013, 27(1): 40-44. |
112. | 溫宗良, 岳桂華, 楊靖, 等. 基于共軛梯度算法的BP神經網絡在高血壓證候診斷中的應用. 山東中醫藥大學學報, 2012, 36(3): 183-184. |
113. | 茹清靜, 葉衛江, 楊丹紅, 等. 肝衰竭患者胃氣定量評估及其與預后的關系. 中華中醫藥雜志, 2012, 27(5): 1304-1308. |
114. | Tang AC, Chung JW, Wong TK. Validation of a novel traditional Chinese medicine pulse diagnostic model using an artificial neural network. Evid Based Complement Alternat Med, 2012, 2012: 685094. |
115. | 蔣軍林, 周慎, 趙瑞成, 等. 中風病氣虛血瘀證的計量診斷研究. 國際中醫中藥雜志, 2011, 33(2): 143-145. |
116. | 李亞, 胡金亮, 李素云, 等. 基于數據挖掘的彌漫性肺間質疾病中醫證候診斷模型建立研究. 遼寧中醫雜志, 2010, 37(12): 2333-2335. |
117. | Liu GP, Li GZ, Wang YL, et al. Modelling of inquiry diagnosis for coronary heart disease in traditional Chinese medicine by using multi-label learning. BMC Complement Altern Med, 2010, 10: 37. |
118. | 李梢, 張寧波, 李志紅, 等. 慢性乙型肝炎患者肝膽濕熱證和肝郁脾虛證的決策樹診斷模型初探. 中國中西醫結合雜志, 2009, 29(11): 993-996. |
119. | 康明祥, 賈紅, 袁婉麗. 慢性疲勞綜合征定量診斷模型的研究. 實用中醫內科雜志, 2009, 23(3): 29-31. |
120. | 白云靜, 孟慶剛, 申洪波, 等. 基于改進的BP神經網絡的糖尿病腎病中醫證候非線性建模研究. 北京中醫藥大學學報, 2008, 31(5): 308-311. |
121. | 吳大嶸, 梁偉雄, 溫澤淮, 等. 建立中風病血瘀證宏觀辨證量化標準的方法探討. 廣州中醫藥大學學報, 1999, 16(4): 249-252, 258. |
122. | 王榕平, 王瑩. 肝瘀脾虛型肝癌酶學指標生存預測模型. 中西醫結合肝病雜志, 1999, 34(5): 38-39. |
123. | Rabar S, Lau R, O'Flynn N, et al. Risk assessment of fragility fractures: summary of NICE guidance. BMJ, 2012, 345: e3698. |
124. | Goff DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. Circulation, 2014, 129(25 Suppl 2): S49-S73. |
125. | Kareemi H, Vaillancourt C, Rosenberg H, et al. Machine learning versus usual care for diagnostic and prognostic prediction in the emergency department: a systematic review. Acad Emerg Med, 2021, 28(2): 184-196. |
126. | Pladet LCA, Barten JMM, Vernooij LM, et al. Prognostic models for mortality risk in patients requiring ECMO. Intensive Care Med, 2023, 49(2): 131-141. |
127. | Tan J, Ma C, Zhu C, et al. Prediction models for depression risk among older adults: systematic review and critical appraisal. Ageing Res Rev, 2023, 83: 101803. |
128. | Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ, 2020, 368: m689. |
129. | Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ, 2020, 369: m1328. |
130. | Steyerberg EW, Eijkemans MJ, Harrell FE, et al. Prognostic modeling with logistic regression analysis: in search of a sensible strategy in small data sets. Med Decis Making, 2001, 21(1): 45-56. |
131. | Peek N, Arts DG, Bosman RJ, et al. External validation of prognostic models for critically ill patients required substantial sample sizes. J Clin Epidemiol, 2007, 60(5): 491-501. |
132. | Steyerberg EW, Harrell FE, Borsboom GJ, et al. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol, 2001, 54(8): 774-781. |
133. | Austin PC, Steyerberg EW. Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models. Stat Methods Med Res, 2017, 26(2): 796-808. |
134. | Van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol, 2014, 14: 137. |
135. | Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model. BMJ, 2020, 368: m441. |
136. | Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. Heart, 2012, 98(9): 683-690. |
137. | Naaktgeboren CA, Bertens LC, van Smeden M, et al. Value of composite reference standards in diagnostic research. BMJ, 2013, 347: f5605. |
138. | Moons KG, Grobbee DE. When should we remain blind and when should our eyes remain open in diagnostic studies. J Clin Epidemiol, 2002, 55(7): 633-636. |
139. | Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ, 2015, 350: g7594. |
- 1. Moons KG, Royston P, Vergouwe Y, et al. Prognosis and prognostic research: what, why, and how. BMJ, 2009, 338: b375.
- 2. Bouwmeester W, Zuithoff NP, Mallett S, et al. Reporting and methods in clinical prediction research: a systematic review. PLoS Med, 2012, 9(5): 1-12.
- 3. Steyerberg EW, Moons KG, van der Windt DA, et al. Prognosis research strategy (PROGRESS) 3: prognostic model research. PLoS Med, 2013, 10(2): e1001381.
- 4. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J, 2014, 35(29): 1925-1931.
- 5. Wolff RF, Moons KGM, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med, 2019, 170(1): 51-58.
- 6. Moons KGM, Wolff RF, Riley RD, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration. Ann Intern Med, 2019, 170(1): 1-33.
- 7. Andaur Navarro CL, Damen JAA, Takada T, et al. Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review. BMJ, 2021, 375: n2281.
- 8. Chu H, Moon S, Park J, et al. The use of artificial intelligence in complementary and alternative medicine: a systematic scoping review. Front Pharmacol, 2022, 13: 826044.
- 9. Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med, 2014, 11(10): e1001744.
- 10. 張馨心, 呂曉東, 龐立健, 等. 基于機器學習的特發性肺纖維化氣陰兩虛兼血瘀證診斷模型研究. 遼寧中醫藥大學學報, 2023, 25(2): 191-196.
- 11. 姚帥君, 閆敬來, 杜彩鳳, 等. 基于集成學習構建圍絕經期綜合征中醫智能診斷模型. 中醫雜志, 2023, 64(6): 572-580.
- 12. 孫聰, 戴國華, 管慧, 等. 基于決策樹算法的慢性心力衰竭患者中西醫預后模型構建及驗證. 中國中醫基礎醫學雜志, 2023, 29(1): 120-126.
- 13. 黃少鵬, 姚衍竹. 不同中醫體質聯合肺功能參數的小兒咳嗽變異性哮喘的臨床預測. 四川中醫, 2023, 41(2): 86-90.
- 14. 高明友, 潘賜明, 丁家雯. 胃癌患者的中醫證素分布及與病情嚴重程度的相關性研究. 廣州中醫藥大學學報, 2023, 40(4): 802-806.
- 15. 高靜, 陳瓊華, 何曉銘, 等. 基于中醫證型的人工全膝關節置換術后慢性疼痛的危險因素探究及風險預測模型構建. 廣州中醫藥大學學報, 2023, 40(3): 549-555.
- 16. 董興魯, 高穎, 唐璐, 等. 基于多元Logistic回歸的缺血性中風病恢復期腎虛證證候診斷模型研究. 現代中醫臨床, 2023, 30(1): 26-30.
- 17. 陳玄, 葉云金, 陳娟, 等. 絕經后女性中醫癥候群骨質疏松風險預測工具構建. 中國骨質疏松雜志, 2023, 29(3): 356-360.
- 18. Liu X, Huang X, Zhao J, et al. Application of machine learning in Chinese medicine differentiation of dampness-heat pattern in patients with type 2 diabetes mellitus. Heliyon, 2023, 9(2): e13289.
- 19. 朱玲, 鄭婉婷, 張竹綠, 等. 基于卷積神經網絡的潰瘍性結腸炎證候預測模型研究. 中國數字醫學, 2022, 17(4): 49-55.
- 20. 張曉蘭, 方桂珍, 楊丹華, 等. 中老年女性腎陽虛型壓力性尿失禁風險預測模型的構建. 護理與康復, 2022, 21(7): 1-5.
- 21. 張夢楚, 趙倩倩, 解天驍, 等. 基于脈圖參數構建原發性高血壓患者伴左心室肥厚的風險預測列線圖模型. 中國中醫藥信息雜志, 2022, 29(8): 116-122.
- 22. 楊繼, 張垚, 高晟瑋, 等. 預測高血壓病患者合并慢性腎臟病風險的列線圖模型構建. 天津中醫藥, 2022, 39(3): 295-302.
- 23. 夏庭偉, 李煒弘, 丁維俊, 等. 2型糖尿病并發腎病中西醫多模態特征融合預測模型構建. 中華中醫藥雜志, 2022, 37(7): 4116-4120.
- 24. 王中瑞, 符宇, 趙瑞霞, 等. 糖尿病合并穩定型心絞痛患者發生主要不良心腦血管事件的中醫預測模型構建及應用評估研究. 中國全科醫學, 2022, 25(20): 2450-2456.
- 25. 王麗丹, 劉可可, 王永祥, 等. 中醫體質類型與阿爾茨海默病關系的研究. 中華行為醫學與腦科學雜志, 2022, 31(6): 541-547.
- 26. 田之魁, 張鑫海, 孫璇, 等. 基于舌象的糖尿病足風險預測模型的構建. 中醫雜志, 2022, 63(19): 1840-1846.
- 27. 唐艷芳, 劉旭東, 呂萍, 等. 基于BP神經網絡、隨機森林和決策樹建立早期慢性乙型病毒性肝炎肝硬化無創診斷模型. 重慶醫學, 2022, 51(7): 1161-1166.
- 28. 任麗麗, 戴國華, 高武霖, 等. 基于Lasso-Cox回歸評價中醫藥干預在慢性心力衰竭患者預后中的治療價值. 中華中醫藥雜志, 2022, 37(10): 6000-6005.
- 29. 李軍, 胡曉娟, 周昌樂, 等. 基于隨機森林算法的糖尿病舌象特征分析和診斷模型研究. 中華中醫藥雜志, 2022, 37(3): 1639-1643.
- 30. 賈文, 尹瑩, 余晗, 等. 基于決策樹模型的中西結合診療模式下新型冠狀病毒感染住院患者死亡風險因素分析. 亞太傳統醫藥, 2022, 18(7): 68-74.
- 31. 洪敏萍, 周長玉, 卜陽陽, 等. 基于多參數MRI影像組學特征預測肉芽腫性乳腺炎中醫證型的研究. 浙江中醫藥大學學報, 2022, 46(5): 483-489.
- 32. 樊佳賽, 杜藝菲, 許佳穎, 等. 基于中醫證候和機器學習構建慢性心力衰竭中西醫結合預后模型. 基礎醫學與臨床, 2022, 42(8): 1169-1175.
- 33. 段紹杰, 劉尊敬, 陳佳良, 等. 成人非酒精性脂肪性肝病患者ALT升高的危險因素分析及預測模型建立. 海南醫學院學報, 2022, 28(4): 263-268.
- 34. 崔偉鋒, 林萍, 劉蕭蕭, 等. 基于機器學習的原發性高血壓心血管風險預后模型. 中國老年學雜志, 2022, 42(15): 3625-3629.
- 35. 車前子, 王晶, 白衛國, 等. 基于LASSO回歸的骨質疏松腎陽虛狀態辨識模型研究. 中華中醫藥雜志, 2022, 37(10): 5928-5933.
- 36. Yang J, Chen L, Cai S, et al. Prediction of H-type hypertension based on pulse-taking and inquiry diagnosis. Biomed Signal Process Control, 2022, 75: 103723.
- 37. Wang W, Zeng W, Chen X, et al. Parameter study on characteristic pulse diagram of polycystic ovary syndrome based on logistic regression analysis. J Obstet Gynaecol, 2022, 42(8): 3712-3719.
- 38. Tang M, Gao L, He B, et al. Machine learning based prognostic model of Chinese medicine affecting the recurrence and metastasis of Ⅰ-Ⅲ stage colorectal cancer: a retrospective study in China. Front Oncol, 2022, 12: 1044344.
- 39. Luo B, Yang M, Han Z, et al. Establishment of a nomogram-based prognostic model (LASSO-COX Regression) for predicting progression-free survival of primary non-small cell lung cancer patients treated with adjuvant chinese herbal medicines therapy: a retrospective study of case series. Front Oncol, 2022, 12: 882278.
- 40. Huang Z, Miao J, Chen J, et al. A traditional Chinese medicine syndrome classification model based on cross-feature generation by convolution neural network: model development and validation. JMIR Med Inform, 2022, 10(4): e29290.
- 41. Filist S, Al-Kasasbeh RT, Shatalova O, et al. Biotechnical system based on fuzzy logic prediction for surgical risk classification using analysis of current-voltage characteristics of acupuncture points. J Integr Med, 2022, 20(3): 252-264.
- 42. Cheng B, Ma J, Chen X, et al. Objective study of the facial parameters of observations in patients with type 2 diabetes mellitus by machine learning. Ann Transl Med, 2022, 10(18): 960.
- 43. 朱兆鑫, 楊珊珊, 彭安杰, 等. 基于自適應矩估計的BP神經網絡對中醫痛經證型分類的研究. 世界科學技術-中醫藥現代化, 2021, 23(12): 4560-4568.
- 44. 周淑珍, 張燕媚, 何志仁, 等. 基于中醫藥治療的糖尿病腎病風險預測模型構建與驗證. 時珍國醫國藥, 2021, 32(6): 1505-1509.
- 45. 章軼立, 譚楠楠, 劉俊杰, 等. 基本證候視角下的慢性心力衰竭關聯因素篩選及判別模型構建: 一項多中心橫斷面研究. 中華中醫藥雜志, 2021, 36(6): 3205-3208.
- 46. 葉樺, 何黎, 胡遠樟, 等. 基于卷積神經網絡的2型糖尿病證候分布演化規律研究. 時珍國醫國藥, 2021, 32(6): 1522-1524.
- 47. 楊敏, 王君, 牛文全, 等. 兒童偏矮身材的中醫體質分布及風險預測模型構建. 安徽中醫藥大學學報, 2021, 40(6): 29-36.
- 48. 楊慧婷, 蔣金蘭, 金林珍, 等. 針灸治療中風恢復期臨床預測模型的建立和分析. 中國針灸, 2021, 41(8): 855-860.
- 49. 熊夢欣, 曾明星, 周廣文, 等. 亞急性甲狀腺炎肝經郁熱證量化診斷標準的初探. 中國中醫急癥, 2021, 30(9): 1527-1531.
- 50. 王志武, 劉春秋, 王靜, 等. 放射性肺損傷肺癌病證結合預測模型的構建和驗證. 中華中醫藥雜志, 2021, 36(9): 5556-5560.
- 51. 王鈺涵, 段鵬喆, 張鑫, 等. 基于決策樹和神經網絡的高血壓病危險因素研究. 世界科學技術-中醫藥現代化, 2021, 23(8): 2784-2794.
- 52. 孫千惠, 李婷婷, 王曉燕, 等. 肺脾兩虛型支氣管哮喘診斷預測模型研究. 中醫藥導報, 2021, 27(1): 79-81.
- 53. 劉超, 高嘉良, 董艷, 等. 基于BP神經網絡的冠狀動脈臨界病變患者證候要素及其常見組合中醫辨證診斷模型研究. 中國中醫藥信息雜志, 2021, 28(3): 104-110.
- 54. 李妍, 彭心怡, 孔燕妮, 等. 免疫檢查點抑制劑療效預測分析及結合中醫證型的Nomogram圖構建. 浙江中西醫結合雜志, 2021, 31(8): 721-725.
- 55. 葛修芹, 張金山, 張忠誠. 類風濕性關節炎并間質性肺病的影響因素分析及其風險預測列線圖模型構建研究. 實用心腦肺血管病雜志, 2021, 29(9): 53-58.
- 56. 曹云, 舒鑫, 張丹莉, 等. 急性缺血性腦卒中氣虛證列線圖預測模型的構建. 中華中醫藥雜志, 2021, 36(4): 1939-1944.
- 57. Zhao T, Yang X, Wan R, et al. Study of TCM syndrome identification modes for patients with type 2 diabetes mellitus based on data mining. Evid Based Complement Alternat Med, 2021, 2021: 5528550.
- 58. Xia SJ, Gao BZ, Wang SH, et al. Modeling of diagnosis for metabolic syndrome by integrating symptoms into physiochemical indexes. Biomed Pharmacother, 2021, 137: 111367.
- 59. Xi X, Fu Z, Liu T, et al. Establishment and verification of scoring system for colorectal adenoma recurrence. Risk Manag Healthc Policy, 2021, 14: 4545-4552.
- 60. Wu J, Hu R, Li M, et al. Diagnosis of sleep disorders in traditional Chinese medicine based on adaptive neuro-fuzzy inference system. Biomed Signal Process Control, 2021, 70: 102334.
- 61. Wang Y, Zhang R, Pi M, et al. Correlation between TCM syndromes and type 2 diabetic comorbidities based on fully connected neural network prediction model. Evid Based Complement Alternat Med, 2021, 2021: 6095476.
- 62. Shi YL, Liu JY, Hu XJ, et al. A new method for syndrome classification of non-small-cell lung cancer based on data of tongue and pulse with machine learning. Biomed Res Int, 2021, 2021: 1337558.
- 63. Li J, Yuan P, Hu X, et al. A tongue features fusion approach to predicting prediabetes and diabetes with machine learning. J Biomed Inform, 2021, 115: 103693.
- 64. Li J, Chen Q, Hu X, et al. Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques. Int J Med Inform, 2021, 149: 104429.
- 65. Guan H, Dai GH, Gao WL, et al. A 5-year survival prediction model for chronic heart failure patients induced by coronary heart disease with traditional Chinese medicine intervention. Evid Based Complement Alternat Med, 2021, 2021: 4381256.
- 66. Ding L, Zhang XY, Wu DY, et al. Application of an extreme learning machine network with particle swarm optimization in syndrome classification of primary liver cancer. J Integr Med, 2021, 19(5): 395-407.
- 67. 張振, 田雪飛, 郜文輝, 等. 基于決策樹及貝葉斯網絡建立原發性肝癌肝郁脾虛證診斷模型研究. 中國中醫藥信息雜志, 2020, 27(9): 115-120.
- 68. 于李. 神經網絡模型預測老年HBV相關原發性肝癌患者預后研究. 轉化醫學雜志, 2020, 9(5): 296-298, 307.
- 69. 王一葦, 倪寅, 紀超凡, 等. 基于療效影響因素對加味清絡飲治療類風濕性關節炎臨床預測模型與列線圖繪制的初步探索. 中醫藥信息, 2020, 37(6): 82-87.
- 70. 劉超, 陳恒文, 劉蘭椿, 等. 基于多種算法對冠心病不穩定型心絞痛腎虛血瘀證診斷模型的研究. 世界科學技術-中醫藥現代化, 2020, 22(11): 3839-3845.
- 71. 宮文浩, 蘭天瑩, 莫清蓮, 等. 基于決策樹和人工神經網絡的小兒肺炎痰熱閉肺證診斷模型研究. 世界科學技術-中醫藥現代化, 2020, 22(7): 2548-2555.
- 72. 丁亮, 章新友, 劉莉萍, 等. 基于深度神經網絡的原發性肝癌證型診斷分類預測模型. 世界科學技術-中醫藥現代化, 2020, 22(12): 4185-4192.
- 73. 崔偉鋒, 劉蕭蕭, 韓靜旖, 等. 基于隨機森林的原發性高血壓心血管風險預后模型. 中國老年學雜志, 2020, 40(4): 814-816.
- 74. 曾雪元, 宮偉國, 胡云峰, 等. 基于決策樹算法構建缺血性卒中復發的預測模型. 吉林中醫藥, 2020, 40(4): 437-440.
- 75. 安靜, 彭繼升, 魏玥, 等. 胃癌前病變寒熱錯雜證中醫診斷模型的建立. 現代中醫臨床, 2020, 27(1): 12-15.
- 76. Zhao Y, Peng H, Wang S, et al. Clinical analysis of acute coronary syndrome patients with Qi-blood syndromes: establishment of a diagnostic prediction model for syndrome differentiation. Ann Palliat Med, 2020, 9(4): 2096-2110.
- 77. Ren Q, Zhou XW, He MY, et al. A quantitative diagnostic method for phlegm and blood stasis syndrome in coronary heart disease using tongue, face, and pulse indexes: an exploratory pilot study. J Altern Complement Med, 2020, 26(8): 729-737.
- 78. Liu Z, He H, Yan S, et al. End-to-end models to imitate traditional Chinese medicine syndrome differentiation in lung cancer diagnosis: model development and validation. JMIR Med Inform, 2020, 8(6): e17821.
- 79. 趙書穎, 張新雅, 李運倫. 基于決策樹及神經網絡的高血壓病陰陽兩虛證診斷模型的研究. 中華中醫藥學刊, 2019, 37(5): 1120-1123.
- 80. 章軼立, 魏戌, 聶佩蕓, 等. 基于SMOTE算法和決策樹的絕經后骨質疏松性骨折分類模型建構. 中國骨質疏松雜志, 2019, 25(1): 1-5.
- 81. 徐鈺瑩, 張文麗, 楊宇飛, 等. 晚期結直腸癌中醫藥干預治療療效預測模型的建立與應用. 世界科學技術-中醫藥現代化, 2019, 21(7): 1518-1524.
- 82. 舒鑫, 曹云, 黃幸, 等. 基于神經網絡分析技術的急性缺血性卒中氣虛證預測模型構建的研究. 環球中醫藥, 2019, 12(11): 1650-1655.
- 83. 付源峰, 林潔濤, 黃子菁, 等. 中西醫結合治療晚期非小細胞肺癌隊列療效預測模型的建立. 青島大學學報(醫學版), 2019, 55(6): 661-666.
- 84. 章軼立, 魏戌, 聶佩蕓, 等. 基于GroupLasso的Logistic回歸模型構建絕經后骨質疏松性骨折初發風險評估工具. 中國骨質疏松雜志, 2018, 24(8): 994-999.
- 85. 王萍, 史彬, 溫艷東, 等. 胃癌前病變病證結合風險預測模型的構建研究. 中國中西醫結合雜志, 2018, 38(7): 773-778.
- 86. 王娟, 趙慧輝, 陳建新, 等. 基于神經網絡技術分析的慢性心力衰竭血瘀證診斷模型研究. 世界中醫藥, 2018, 13(9): 2122-2126.
- 87. 李靜茹, 馬建萍, 馬秀蘭, 等. Logistic回歸聯合ROC曲線評價中醫癥狀對HIV感染者中醫證型的預測價值. 中華中醫藥雜志, 2018, 33(12): 5627-5629.
- 88. Luo ZY, Cui J, Hu XJ, et al. A study of machine-learning classifiers for hypertension based on radial pulse wave. Biomed Res Int, 2018, 2018: 2964816.
- 89. 卓緣圓, 于海波, 楊卓欣, 等. 不同中醫證型復發腦梗死的眼底血管特征分析及預測模型的建立. 遼寧中醫雜志, 2017, 44(5): 909-913.
- 90. 張赟華, 王益斐, 李國法. 中醫癥狀評分在慢性心功能不全急性加重期患者預后評價中的應用價值及死亡概率模型的建立. 中國中西醫結合急救雜志, 2017, 24(5): 469-472.
- 91. 許明東, 馬曉聰, 溫宗良, 等. 支持向量機在高血壓病中醫證候診斷中的應用. 中華中醫藥雜志, 2017, 32(6): 2497-2500.
- 92. 呂航, 楊秋莉, 杜漸, 等. 基于決策樹預測糖尿病合并冠心病患病風險的中醫人格體質特征研究. 南京中醫藥大學學報, 2017, 33(6): 639-642.
- 93. 呂航, 王昊, 劉媛, 等. 基于決策樹的中醫人格體質對2型糖尿病患者伴發非酒精性脂肪肝病風險的預測研究. 中國中醫基礎醫學雜志, 2017, 23(9): 1257-1259.
- 94. 呂航, 杜漸, 劉媛, 等. 多層感知器模型在中醫人格、體質預測糖尿病性冠心病患病風險中的應用研究. 中國中醫藥信息雜志, 2017, 24(12): 88-91.
- 95. 黃鸝, 梁詠竹, 林立宇, 等. 糖尿病不同階段人群經絡值特點及預測模型的構建. 廣東醫學, 2017, 38(17): 2707-2710.
- 96. Zhao Y, Kang H, Peng JH, et al. Key symptoms selection for two major syndromes diagnosis of Chinese medicine in chronic hepatitis B. Chin J Integr Med, 2017, 23(4): 253-260.
- 97. Zhang J, Xu J, Hu X, et al. Diagnostic method of diabetes based on support vector machine and tongue images. Biomed Res Int, 2017, 2017: 7961494.
- 98. 姚嵐, 方芳. 中西醫聯合構建ACS患者發生心臟事件的預測模型. 世界中西醫結合雜志, 2016, 11(10): 1420-1424,1443.
- 99. 許明東, 馬曉聰, 岳桂華, 等. 基于支持向量機的高血壓中醫證候與血脂、血尿酸、空腹血糖關系的研究. 時珍國醫國藥, 2016, 27(12): 3063-3065.
- 100. 徐瑋斐, 顧巍杰, 劉國萍, 等. 基于隨機森林和多標記學習算法的慢性胃炎實證特征選擇和證候分類識別研究. 中國中醫藥信息雜志, 2016, 23(8): 18-23.
- 101. 王志武, 王靜怡, 胡建, 等. 基于中西醫多模態信息的放射性肺損傷早期預測模型. 中國煤炭工業醫學雜志, 2016, 19(3): 413-417.
- 102. 唐繼云, 李東芳, 侯芳芳, 等. 應用Logistic回歸和ROC曲線探討胃癌脾胃氣虛證中醫診斷模型. 中醫藥導報, 2016, 22(12): 30-34.
- 103. 郭麗穎, 袁晨翼, 賈建偉, 等. HBV-ACLF患者“胃氣”相關預后模型的建立. 中華腫瘤防治雜志, 2016, 23(S1): 143-144, 152.
- 104. Xu J, Xu ZX, Lu P, et al. Classifying syndromes in Chinese medicine using multi-label learning algorithm with relevant features for each label. Chin J Integr Med, 2016, 22(11): 867-871.
- 105. Chi XL, Shi MJ, Xiao HM, et al. The score model containing Chinese medicine syndrome element of blood stasis presented a better performance compared to APRI and FIB-4 in diagnosing advanced fibrosis in patients with chronic hepatitis B. Evid Based Complement Alternat Med, 2016, 2016: 3743427.
- 106. 裘濤, 孔麗婭, 陶水良, 等. 基于神經網絡技術分析的中醫證素研究缺血性腦卒中后抑郁的發生. 中華中醫藥雜志, 2015, 30(10): 3764-3767.
- 107. Kang H, Zhao Y, Li C, et al. Integrating clinical indexes into four-diagnostic information contributes to the traditional Chinese medicine (TCM) syndrome diagnosis of chronic hepatitis B. Sci Rep, 2015, 5: 9395.
- 108. 趙娜, 胡萬華, 陳克龍, 等. 亞健康失眠陰虛火旺型的logistic回歸及判別分析. 中華中醫藥學刊, 2014, 32(10): 2369-2371.
- 109. 許文杰, 劉攀, 燕海霞, 等. 528例冠心病患者中醫脈象非線性動力學特征在證候診斷模型中的應用. 中華中醫藥雜志, 2014, 29(5): 1661-1665.
- 110. Liu GP, Yan JJ, Wang YQ, et al. Deep learning based syndrome diagnosis of chronic gastritis. Comput Math Methods Med, 2014, 2014: 938350.
- 111. 陳瀟雨, 馬利莊, 胡義揚. 基于決策樹方法的慢性乙型肝炎中醫證候分類. 上海中醫藥大學學報, 2013, 27(1): 40-44.
- 112. 溫宗良, 岳桂華, 楊靖, 等. 基于共軛梯度算法的BP神經網絡在高血壓證候診斷中的應用. 山東中醫藥大學學報, 2012, 36(3): 183-184.
- 113. 茹清靜, 葉衛江, 楊丹紅, 等. 肝衰竭患者胃氣定量評估及其與預后的關系. 中華中醫藥雜志, 2012, 27(5): 1304-1308.
- 114. Tang AC, Chung JW, Wong TK. Validation of a novel traditional Chinese medicine pulse diagnostic model using an artificial neural network. Evid Based Complement Alternat Med, 2012, 2012: 685094.
- 115. 蔣軍林, 周慎, 趙瑞成, 等. 中風病氣虛血瘀證的計量診斷研究. 國際中醫中藥雜志, 2011, 33(2): 143-145.
- 116. 李亞, 胡金亮, 李素云, 等. 基于數據挖掘的彌漫性肺間質疾病中醫證候診斷模型建立研究. 遼寧中醫雜志, 2010, 37(12): 2333-2335.
- 117. Liu GP, Li GZ, Wang YL, et al. Modelling of inquiry diagnosis for coronary heart disease in traditional Chinese medicine by using multi-label learning. BMC Complement Altern Med, 2010, 10: 37.
- 118. 李梢, 張寧波, 李志紅, 等. 慢性乙型肝炎患者肝膽濕熱證和肝郁脾虛證的決策樹診斷模型初探. 中國中西醫結合雜志, 2009, 29(11): 993-996.
- 119. 康明祥, 賈紅, 袁婉麗. 慢性疲勞綜合征定量診斷模型的研究. 實用中醫內科雜志, 2009, 23(3): 29-31.
- 120. 白云靜, 孟慶剛, 申洪波, 等. 基于改進的BP神經網絡的糖尿病腎病中醫證候非線性建模研究. 北京中醫藥大學學報, 2008, 31(5): 308-311.
- 121. 吳大嶸, 梁偉雄, 溫澤淮, 等. 建立中風病血瘀證宏觀辨證量化標準的方法探討. 廣州中醫藥大學學報, 1999, 16(4): 249-252, 258.
- 122. 王榕平, 王瑩. 肝瘀脾虛型肝癌酶學指標生存預測模型. 中西醫結合肝病雜志, 1999, 34(5): 38-39.
- 123. Rabar S, Lau R, O'Flynn N, et al. Risk assessment of fragility fractures: summary of NICE guidance. BMJ, 2012, 345: e3698.
- 124. Goff DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. Circulation, 2014, 129(25 Suppl 2): S49-S73.
- 125. Kareemi H, Vaillancourt C, Rosenberg H, et al. Machine learning versus usual care for diagnostic and prognostic prediction in the emergency department: a systematic review. Acad Emerg Med, 2021, 28(2): 184-196.
- 126. Pladet LCA, Barten JMM, Vernooij LM, et al. Prognostic models for mortality risk in patients requiring ECMO. Intensive Care Med, 2023, 49(2): 131-141.
- 127. Tan J, Ma C, Zhu C, et al. Prediction models for depression risk among older adults: systematic review and critical appraisal. Ageing Res Rev, 2023, 83: 101803.
- 128. Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ, 2020, 368: m689.
- 129. Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ, 2020, 369: m1328.
- 130. Steyerberg EW, Eijkemans MJ, Harrell FE, et al. Prognostic modeling with logistic regression analysis: in search of a sensible strategy in small data sets. Med Decis Making, 2001, 21(1): 45-56.
- 131. Peek N, Arts DG, Bosman RJ, et al. External validation of prognostic models for critically ill patients required substantial sample sizes. J Clin Epidemiol, 2007, 60(5): 491-501.
- 132. Steyerberg EW, Harrell FE, Borsboom GJ, et al. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol, 2001, 54(8): 774-781.
- 133. Austin PC, Steyerberg EW. Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models. Stat Methods Med Res, 2017, 26(2): 796-808.
- 134. Van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol, 2014, 14: 137.
- 135. Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model. BMJ, 2020, 368: m441.
- 136. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. Heart, 2012, 98(9): 683-690.
- 137. Naaktgeboren CA, Bertens LC, van Smeden M, et al. Value of composite reference standards in diagnostic research. BMJ, 2013, 347: f5605.
- 138. Moons KG, Grobbee DE. When should we remain blind and when should our eyes remain open in diagnostic studies. J Clin Epidemiol, 2002, 55(7): 633-636.
- 139. Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ, 2015, 350: g7594.