| 1. |
吳緋紅, 趙煌旋, 楊帆, 等. 醫學影像+人工智能的發展、現狀與未來. 臨床放射學雜志, 2022, 41(4): 764-767.
|
| 2. |
金征宇. 人工智能醫學影像應用: 現實與挑戰. 放射學實踐, 2018, 33(10): 989-991.
|
| 3. |
付姣慧, 常曉丹, 沙俏麗, 等. 2011年—2020年深度學習用于醫學影像學研究文獻分析. 中國介入影像與治療學, 2022, 19(1): 53-57.
|
| 4. |
Mongan J, Moy L, Kahn CE. Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell, 2020, 2(2): e200029.
|
| 5. |
李子孝, 熊云云, 丁玲玲, 等. 人工智能干預性臨床試驗報告指南: CONSORT-AI擴展. 中國卒中雜志, 2020, 15(12): 1327-1336.
|
| 6. |
朱一丹, 李會娟, 武陽豐. 診斷準確性研究報告規范(STARD) 2015介紹與解讀. 中國循證醫學雜志, 2016, 16(6): 730-735.
|
| 7. |
王波, 詹思延. 如何撰寫高質量的流行病學研究論文第一講觀察性流行病學研究報告規范—STROBE介紹. 中華流行病學雜志, 2006, (6): 547-549.
|
| 8. |
David M, Kenneth FS, Douglas GA, 等. CONSORT聲明: 提高平行隨機試驗報告質量的修訂建議. 中國循證醫學雜志, 2005, 5(9): 702-707.
|
| 9. |
Si L, Zhong J, Huo J, et al. Deep learning in knee imaging: a systematic review utilizing a checklist for artificial intelligence in medical imaging (CLAIM). Eur Radiol, 2022, 32(2): 1353-1361.
|
| 10. |
Luo W, Phung D, Tran T, et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res, 2016, 18(12): e323.
|
| 11. |
Handelman GS, Kok HK, Chandra RV, et al. Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods. AJR Am J Roentgenol, 2019, 212(1): 38-43.
|
| 12. |
Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology, 2018, 286(3): 800-809.
|
| 13. |
Bluemke DA, Moy L, Bredella MA, et al. Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers-from the Radiology Editorial Board. Radiology, 2020, 294(3): 487-489.
|
| 14. |
Hazlett HC, Gu H, Munsell BC, et al. Early brain development in infants at high risk for autism spectrum disorder. Nature, 2017, 542(7641): 348-351.
|
| 15. |
Bossuyt PM, Reitsma JB, Bruns DE, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. Radiology, 2015, 277(3): 826-832.
|
| 16. |
Geis JR, Brady AP, Wu CC, et al. Ethics of artificial intelligence in radiology: summary of the Joint European and North American Multisociety Statement. Radiology, 2019, 293(2): 436-440.
|
| 17. |
Willemink MJ, Koszek WA, Hardell C, et al. Preparing medical imaging data for machine learning. Radiology, 2020, 295(1): 4-15.
|
| 18. |
Harvey H, Glocker B. A standardised approach for preparing imaging data for machine learning tasks in radiology. In: Ranschaert ER, Morozov S, Algra PR, et al. Artificial Intelligence in medical imaging: opportunities, applications and risks. New York: Springer International, 2019.
|
| 19. |
Rubin DL, Kahn CE. Common data elements in radiology. Radiology, 2017, 283(3): 837-844.
|
| 20. |
Kohli M, Alkasab T, Wang K, et al. Bending the artificial intelligence curve for radiology: informatics tools from ACR and RSNA. J Am Coll Radiol, 2019, 16(10): 1464-1470.
|
| 21. |
Radiological Society of North America, American College of Radiology. RadElement: common data elements. 2020.
|
| 22. |
Sheehan J, Hirschfeld S, Foster E, et al. Improving the value of clinical research through the use of Common Data Elements. Clin Trials, 2016, 13(6): 671-676.
|
| 23. |
National Institutes of Health. NIH common data elements (CDE) repository. 2020.
|
| 24. |
Lakhani P, Kim W, Langlotz CP. Automated extraction of critical test values and communications from unstructured radiology reports: an analysis of 9. 3 million reports from 1990 to 2011. Radiology, 2012, 265(3): 809-818.
|
| 25. |
Lipton ZC, Berkowitz J, Elkan C. A critical review of recurrent neural networks for sequence learning. 2020.
|
| 26. |
Eng J. Sample size estimation: how many individuals should be studied. Radiology, 2003, 227(2): 309-313.
|
| 27. |
International Committee of Medical Journal Editors. Clinical Trials. 2020.
|
| 28. |
Cohen JF, Korevaar DA, Altman DG, et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open, 2016, 6(11): e012799.
|