| 1. |
Kulkarni S, Seneviratne N, Baig MS, et al. Artificial intelligence in medicine: where are we now. Acad Radiol, 2020, 27(1): 62-70.
|
| 2. |
Hassoun S, Jefferson F, Shi X, et al. Artificial intelligence for biology. Integr Comp Biol, 2022, 61(6): 2267-2275.
|
| 3. |
Xue Y, Chen C, Tan R, et al. Artificial intelligence-assisted bioinformatics, microneedle, and diabetic wound healing: a "new deal" of an old drug. ACS Appl Mater Interfaces, 2022, 14(33): 37396-37409.
|
| 4. |
Gore JC. Artificial intelligence in medical imaging. Magn Reson Imaging, 2020, 68: A1-A4.
|
| 5. |
Falini S, Angelotti G, Cecconi M. ICU management based on big data. Curr Opin Anaesthesiol, 2020, 33(2): 162-169.
|
| 6. |
Pollard TJ, Johnson AEW, Raffa JD, et al. The eICU collaborative research database, a freely available multi-center database for critical care research. Sci Data, 2018, 5: 180178.
|
| 7. |
Wu WT, Li YJ, Feng AZ, et al. Data mining in clinical big data: the frequently used databases, steps, and methodological models. Mil Med Res, 2021, 8(1): 44.
|
| 8. |
Hong N, Liu C, Gao J, et al. State of the art of machine learning-enabled clinical decision support in intensive care units: literature review. JMIR Med Inform, 2022, 10(3): e28781.
|
| 9. |
Arora G, Joshi J, Mandal RS, et al. Artificial intelligence in surveillance, diagnosis, drug discovery and vaccine development against COVID-19. Pathogens, 2021, 10(8): 1048.
|
| 10. |
任全娥. 我國文獻計量學研究40年—基于知識圖譜的回顧與展望. 信息與管理研究, 2020, 5(Z2): 16-31.
|
| 11. |
陳悅, 陳超美, 劉則淵, 等. CiteSpace知識圖譜的方法論功能. 科學學研究, 2015, 33(2): 242-253.
|
| 12. |
Johnson AE, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible critical care database. Sci Data, 2016, 3: 160035.
|
| 13. |
Schwalbe N, Wahl B. Artificial intelligence and the future of global health. Lancet, 2020, 395(10236): 1579-1586.
|
| 14. |
Beil M, Proft I, van Heerden D, et al. Ethical considerations about artificial intelligence for prognostication in intensive care. Intensive Care Med Exp, 2019, 7(1): 70.
|
| 15. |
Wang J, Deng H, Liu B, et al. Systematic evaluation of research progress on natural language processing in medicine over the past 20 years: bibliometric study on PubMed. J Med Internet Res, 2020, 22(1): e16816.
|
| 16. |
耿溪謠, 胡洋. 全球價值鏈視角下中國與印度信息產業國際競爭力的比較分析. 世界地理研究, 2022, 31(2): 270-279.
|
| 17. |
薛博. 關于電子信息技術的發展現狀及趨勢. 信息系統工程, 2023, (4): 137-139.
|
| 18. |
Seah JCY, Tang JSN, Kitchen A, et al. Chest radiographs in congestive heart failure: visualizing neural network learning. Radiology, 2019, 290(2): 514-522.
|
| 19. |
Horng S, Liao R, Wang X, et al. Deep learning to quantify pulmonary edema in chest radiographs. Radiol Artif Intell, 2021, 3(2): e190228.
|
| 20. |
Monteiro M, Newcombe VFJ, Mathieu F, et al. Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study. Lancet Digit Health, 2020, 2(6): e314-e322.
|
| 21. |
Chen L, Ogundele O, Clermont G, et al. Dynamic and personalized risk forecast in step-down units: implications for monitoring paradigms. Ann Am Thorac Soc, 2017, 14(3): 384-391.
|
| 22. |
Joosten A, Rinehart J, Van der Linden P, et al. Computer-assisted individualized hemodynamic management reduces intraoperative hypotension in intermediate- and high-risk surgery: a randomized controlled trial. Anesthesiology, 2021, 135(2): 258-272.
|
| 23. |
Lassau N, Ammari S, Chouzenoux E, et al. Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients. Nat Commun, 2021, 12(1): 634.
|
| 24. |
Seymour CW, Kennedy JN, Wang S, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for Sepsis. JAMA, 2019, 321(20): 2003-2017.
|
| 25. |
Calfee CS, Delucchi KL, Sinha P, et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med, 2018, 6(9): 691-698.
|
| 26. |
Gurovich Y. The path to and impact of disease recognition with AI. IEEE Pulse, 2020, 11(1): 13-16.
|
| 27. |
Khanagar SB, Al-Ehaideb A, Vishwanathaiah S, et al. Scope and performance of artificial intelligence technology in orthodontic diagnosis, treatment planning, and clinical decision-making - a systematic review. J Dent Sci, 2021, 16(1): 482-492.
|
| 28. |
袁波, 代華, 伍佳, 等. 人工智能在全科醫學領域的應用. 中華全科醫學, 2021, 19(9): 5.
|
| 29. |
楊文靜, 杜然然, 呂章艷, 等. 人工智能在疾病預測研究中可視化分析. 中國公共衛生, 2021, 37(5): 871-874.
|
| 30. |
顧堅磊, 江建平, 田園, 等. 人工智能技術的應用: 罕見病臨床決策系統的需求、現狀與挑戰. 第二軍醫大學學報, 2018, 39(8): 819-825.
|
| 31. |
Zhang Z, Van Poucke S, Goyal H, et al. The top 2, 000 cited articles in critical care medicine: a bibliometric analysis. J Thorac Dis, 2018, 10(4): 2437-2447.
|
| 32. |
van de Sande D, van Genderen ME, Huiskens J, et al. Moving from bytes to bedside: a systematic review on the use of artificial intelligence in the intensive care unit. Intensive Care Med, 2021, 47(7): 750-760.
|
| 33. |
李夢薇, 高芳, 徐峰. 人工智能應用場景的成熟度評價研究. 情報雜志, 2022, 41(12): 176-183.
|
| 34. |
Tang R, Zhang S, Ding C, et al. Artificial intelligence in intensive care medicine: bibliometric analysis. J Med Internet Res, 2022, 24(11): e42185.
|