| 1. |
Tokumitsu K, Sugawara N, Maruo K, et al. Prevalence of perinatal depression among Japanese women: a meta-analysis. Ann Gen Psychiatry, 2020, 19(1): 41.
|
| 2. |
Hahn-Holbrook J, Cornwell-Hinrichs T, Anaya I. Economic and health predictors of national postpartum depression prevalence: a systematic review, meta-analysis, and meta-regression of 291 studies from 56 countries. Front Psychiatry, 2017, 8: 248.
|
| 3. |
莊幼青, 蔣翠婷, 曾麗玲, 等. 產婦心理彈性在產后負性生活事件與產后抑郁間的中介效應. 解放軍護理雜志, 2021, 38(12): 18-21.
|
| 4. |
Oliveira TA, Luzetti G, Rosalem MMA, et al. Screening of perinatal depression using the Edinburgh postpartum depression scale. Rev Bras Ginecol Obstet, 2022, 44(5): 452-457.
|
| 5. |
林雪梅, 楊建輝, 陳佩珊, 等. 母親孕期或產后抑郁情緒對子代情緒和行為的影響: Meta分析. 中華實用兒科臨床雜志, 2022, 37(4): 284-289.
|
| 6. |
Farias-Antunez S, Xavier MO, Santos IS. Effect of maternal postpartum depression on offspring's growth. J Affect Disord, 2018, 228: 143-152.
|
| 7. |
Siu AL, Force USPST, Bibbins-Domingo K, et al. Screening for depression in sdults: US Preventive Services Task Force recommendation Statement. JAMA, 2016, 315(4): 380-7.
|
| 8. |
Moons KG, De Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med, 2014, 11(10): e1001744.
|
| 9. |
陳香萍, 張奕, 莊一渝, 等. PROBAST: 診斷或預后多因素預測模型研究偏倚風險的評估工具. 中國循證醫學雜志, 2020, 20(6): 737-744.
|
| 10. |
Amit G, Girshovitz I, Marcus K, et al. Estimation of postpartum depression risk from electronic health records using machine learning. BMC Pregnancy Childbirth, 2021, 21(1): 630.
|
| 11. |
Hochman E, Feldman B, Weizman A, et al. Development and validation of a machine learning-based postpartum depression prediction model: a nationwide cohort study. Depress Anxiety, 2021, 38(4): 400-411.
|
| 12. |
Matsuo S, Ushida T, Emoto R, et al. Machine learning prediction models for postpartum depression: a multicenter study in Japan. J Obstet Gynaecol Res, 2022, 48(7): 1775-1785.
|
| 13. |
Reps JM, Wilcox M, Mcgee BA, et al. Development of multivariable models to predict perinatal depression before and after delivery using patient reported survey responses at weeks 4-10 of pregnancy. BMC Pregnancy Childbirth, 2022, 22(1): 442.
|
| 14. |
Shin D, Lee KJ, Adeluwa T, et al. Machine learning-based predictive modeling of postpartum depression. J Clin Med, 2020, 9(9): 2899.
|
| 15. |
Yang ST, Yang SQ, Duan KM, et al. The development and application of a prediction model for postpartum depression: optimizing risk assessment and prevention in the clinic. J Affect Disord, 2022, 296: 434-442.
|
| 16. |
Zhang Y, Wang S, Hermann A, et al. Development and validation of a machine learning algorithm for predicting the risk of postpartum depression among pregnant women. J Affect Disord, 2021, 279: 1-8.
|
| 17. |
蔡飛亞, 況利, 王我, 等. 基于社會心理因素的產后抑郁癥模型的建立和評價. 第二軍醫大學學報, 2017, 38(4): 476-481.
|
| 18. |
肖美麗, 晏春麗, 付冰, 等. 隨機森林算法在產后抑郁風險預測中的應用. 中南大學學報(醫學版), 2020, 45(10): 1215-1222.
|
| 19. |
Munk-Olsen T, Liu X, Madsen KB, et al. Postpartum depression: a developed and validated model predicting individual risk in new mothers. Transl Psychiatry, 2022, 12(1): 419.
|
| 20. |
Moraes GP, Lorenzo L, Pontes GA, et al. Screening and diagnosing postpartum depression: when and how. Trends Psychiatry Psychother, 2017, 39(1): 54-61.
|
| 21. |
Ogundimu EO, Altman DG, Collins GS. Adequate sample size for developing prediction models is not simply related to events per variable. J Clin Epidemiol, 2016, 76: 175-182.
|
| 22. |
盧振玲, 裴宇權, 李暉, 等. 圍手術期非計劃性低體溫風險預測模型的系統評價. 中國護理管理, 2022, 22(6): 881-887.
|
| 23. |
Scoppetta O, Cassiani-Miranda CA, Arocha-Diaz KN, et al. Validity of the patient health questionnaire-2 (PHQ-2) for the detection of depression in primary care in Colombia. J Affect Disord, 2021, 278: 576-582.
|
| 24. |
吳堯, 謝碧姣, 王丹心, 等. 康復期腦卒中患者跌倒風險預測模型的系統評價. 中華護理雜志, 2022, 57(12): 1440-1446.
|
| 25. |
謝曉冉, 徐蓉. 糖尿病足發病風險預測模型的系統評價. 中華護理雜志, 2021, 56(1): 124-131.
|
| 26. |
Upadhyay RP, Chowdhury R, Aslyeh S, et al. Postpartum depression in India: a systematic review and meta-analysis. Bull World Health Organ, 2017, 95(10): 706C-717C.
|
| 27. |
Pampaka D, Papatheodorou SI, Alseaidan M, et al. Postnatal depressive symptoms in women with and without antenatal depressive symptoms: results from a prospective cohort study. Arch Womens Ment Health, 2019, 22(1): 93-103.
|
| 28. |
孔令華, 王馨悅, 孫玨, 等. 蘇州市某社區產后抑郁流行病學調查及相關危險因素. 四川精神衛生, 2018, 31(2): 152-155.
|
| 29. |
Oztora S, Arslan A, Caylan A, et al. Postpartum depression and affecting factors in primary care. Niger J Clin Pract, 2019, 22(1): 85-91.
|
| 30. |
李海滟, 朱貝貝, 陶芳標. 妊娠糖尿病與圍生期抑郁關系的研究進展. 現代預防醫學, 2021, 48(10): 1802-1805.
|
| 31. |
Schmidt P, Longoni A, Pinheiro RT, et al. Postpartum depression in maternal thyroidal changes. Thyroid Res, 2022, 15(1): 6.
|
| 32. |
Wesseloo R, Kamperman AM, Bergink V, et al. Thyroid peroxidase antibodies during early gestation and the subsequent risk of first-onset postpartum depression: a prospective cohort study. J Affect Disord, 2018, 225: 399-403.
|
| 33. |
祝穎, 陳一丹, 韓怡雯, 等. 產后抑郁癥與甲狀腺功能關系的研究進展. 中國現代醫生, 2019, 57(35): 165-168.
|
| 34. |
鮑慈青, 樂濤, 孫詩雨, 等. 孕早期和孕晚期促甲狀腺激素水平對產婦產后抑郁的影響. 中國婦幼保健, 2022, 37(7): 1163-1166.
|
| 35. |
王凱璇, 吳鴻雁, 姚歡杰, 等. 18 kDa轉位蛋白聯合四氫孕酮血漿含量改變對產后抑郁癥的預測價值. 河北醫藥, 2021, 43(22): 3393-3396.
|
| 36. |
劉嫣, 齊偉靜, 胡潔. 人際心理療法對產后抑郁的治療效果. 解放軍護理雜志, 2018, 35(14): 27-30.
|