| 1. | Steyerberg, EW. Clinical prediction models: a practical approach to development, validation, and updating. Switzerland: Springer Cham, 2019. | 
				                                                        
				                                                            
				                                                                | 2. | 中國心血管病風險評估和管理指南編寫聯合委員會. 中國心血管病風險評估和管理指南. 中國循環雜志, 2019, 34(1): 4-28. | 
				                                                        
				                                                            
				                                                                | 3. | Bull LM, Lunt M, Martin GP, et al. Harnessing repeated measurements of predictor variables for clinical risk prediction: a review of existing methods. Diagn Progn Res, 2020, 4: 9. | 
				                                                        
				                                                            
				                                                                | 4. | Li L, Astor BC, Lewis J, et al. Longitudinal progression trajectory of GFR among patients with CKD. Am J Kidney Dis, 2012, 59(4): 504-512. | 
				                                                        
				                                                            
				                                                                | 5. | Hickey GL, Grant SW, Caiado C, et al. Dynamic prediction modeling approaches for cardiac surgery. Circ Cardiovasc Qual Outcomes, 2013, 6(6): 649-658. | 
				                                                        
				                                                            
				                                                                | 6. | Rizopoulos D, Molenberghs G, Lesaffre EMEH. Dynamic predictions with time-dependent covariates in survival analysis using joint modeling and landmarking. Biom J, 2017, 59(6): 1261-1276. | 
				                                                        
				                                                            
				                                                                | 7. | Li L, Yang Z, Hou Y, et al. Moving beyond the Cox proportional hazards model in survival data analysis: a cervical cancer study. BMJ Open, 2020, 10(7): e033965. | 
				                                                        
				                                                            
				                                                                | 8. | Davis SE, Lasko TA, Chen G, et al. Calibration drift in regression and machine learning models for acute kidney injury. J Am Med Inform Assoc, 2017, 24(6): 1052-1061. | 
				                                                        
				                                                            
				                                                                | 9. | Suresh K, Taylor JMG, Spratt DE, et al. Comparison of joint modeling and landmarking for dynamic prediction under an illness-death model. Biom J, 2017, 59(6): 1277-1300. | 
				                                                        
				                                                            
				                                                                | 10. | Goldstein BA, Navar AM, Pencina MJ, et al. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J Am Med Inform Assoc, 2017, 24(1): 198-208. | 
				                                                        
				                                                            
				                                                                | 11. | Welten M, de Kroon MLA, Renders CM, et al. Repeatedly measured predictors: a comparison of methods for prediction modeling. Diagn Progn Res, 2018, 2: 5. | 
				                                                        
				                                                            
				                                                                | 12. | Goldstein BA, Pomann GM, Winkelmayer WC, et al. A comparison of risk prediction methods using repeated observations: an application to electronic health records for hemodialysis. Stat Med, 2017, 36(17): 2750-2763. | 
				                                                        
				                                                            
				                                                                | 13. | 翟映紅, 陳琪, 韓賀東, 等. 聯合模型介紹及在醫學研究中的應用. 中華流行病學雜志, 2019, 40(11): 1456-1460. | 
				                                                        
				                                                            
				                                                                | 14. | Ferrer L, Putter H, Proust-Lima C. Individual dynamic predictions using landmarking and joint modelling: validation of estimators and robustness assessment. Stat Methods Med Res, 2019, 28(12): 3649-3666. | 
				                                                        
				                                                            
				                                                                | 15. | Tsiatis AA, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Statistica Sinica, 2004, 14: 809-834. | 
				                                                        
				                                                            
				                                                                | 16. | Rizopoulos D, Hatfield LA, Carlin BP, et al. Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging. J Am Stat Assoc, 2014, 109(508): 1385-1397. | 
				                                                        
				                                                            
				                                                                | 17. | Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics, 1997, 53(1): 330-339. | 
				                                                        
				                                                            
				                                                                | 18. | Barrett JK, Sweeting MJ, Wood AM. Dynamic risk prediction for cardiovascular disease: an illustration using the ARIC study. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0169716117300044. | 
				                                                        
				                                                            
				                                                                | 19. | McCrink LM, Marshall AH, Cairns KJ. Advances in joint modelling: a review of recent developments with application to the survival of end stage renal disease patients. International Statistical Review, 2013, 81(2): 249-269. | 
				                                                        
				                                                            
				                                                                | 20. | Gleiss A, Oberbauer R, Heinze G. An unjustified benefit: immortal time bias in the analysis of time-dependent events. Transpl Int, 2018, 31(2): 125-130. | 
				                                                        
				                                                            
				                                                                | 21. | van Houwelingen HC, Putter H. Dynamic predicting by landmarking as an alternative for multi-state modeling: an application to acute lymphoid leukemia data. Lifetime Data Anal, 2008, 14(4): 447-463. | 
				                                                        
				                                                            
				                                                                | 22. | van Houwelingen HC. Dynamic prediction by landmarking in event history analysis. Scandinavian Journal of Statistics, 2007, 34(1): 70-85. | 
				                                                        
				                                                            
				                                                                | 23. | Anderson JR, Cain KC, Gelber RD. Analysis of survival by tumor response. J Clin Oncol, 1983, 1(11): 710-719. | 
				                                                        
				                                                            
				                                                                | 24. | Huang X, Yan F, Ning J, et al. A two-stage approach for dynamic prediction of time-to-event distributions. Stat Med, 2016, 35(13): 2167-2182. | 
				                                                        
				                                                            
				                                                                | 25. | Zheng Y, Heagerty PJ. Partly conditional survival models for longitudinal data. Biometrics, 2005, 61(2): 379-391. | 
				                                                        
				                                                            
				                                                                | 26. | Song X, Davidian M, Tsiatis AA. An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics, 2002, 3(4): 511-528. | 
				                                                        
				                                                            
				                                                                | 27. | Nicolaie MA, van Houwelingen JC, de Witte TM, et al. Dynamic pseudo-observations: a robust approach to dynamic prediction in competing risks. Biometrics, 2013, 69(4): 1043-1052. | 
				                                                        
				                                                            
				                                                                | 28. | Bansal A, Heagerty PJ. A comparison of landmark methods and time-dependent ROC methods to evaluate the time-varying performance of prognostic markers for survival outcomes. Diagn Progn Res, 2019, 3: 14. | 
				                                                        
				                                                            
				                                                                | 29. | Dafni U. Landmark analysis at the 25-year landmark point. Circ Cardiovasc Qual Outcomes, 2011, 4(3): 363-371. | 
				                                                        
				                                                            
				                                                                | 30. | Halabi S, Li C, Luo S. Developing and validating risk assessment models of clinical outcomes in modern oncology. JCO Precis Oncol, 2019, 3: PO.19.00068. | 
				                                                        
				                                                            
				                                                                | 31. | Morgan CJ. Landmark analysis: a primer. J Nucl Cardiol, 2019, 26(2): 391-393. | 
				                                                        
				                                                            
				                                                                | 32. | Grand MK, de Witte TJM, Putter H. Dynamic prediction of cumulative incidence functions by direct binomial regression. Biom J, 2018, 60(4): 734-747. | 
				                                                        
				                                                            
				                                                                | 33. | Kim S, Chen MH, Dey DK, et al. Bayesian dynamic models for survival data with a cure fraction. Lifetime Data Anal, 2007, 13(1): 17-35. | 
				                                                        
				                                                            
				                                                                | 34. | Howle LE, Weber PW, Nichols JM. Bayesian approach to decompression sickness model parameter estimation. Comput Biol Med, 2017, 82: 3-11. | 
				                                                        
				                                                            
				                                                                | 35. | Alsefri M, Sudell M, García-Fi?ana M, et al. Bayesian joint modelling of longitudinal and time to event data: a methodological review. BMC Med Res Methodol, 2020, 20(1): 94. | 
				                                                        
				                                                            
				                                                                | 36. | Yang M, Luo S, DeSantis S. Bayesian quantile regression joint models: inference and dynamic predictions. Stat Methods Med Res, 2019, 28(8): 2524-2537. | 
				                                                        
				                                                            
				                                                                | 37. | He J, McGee DL, Niu X. Application of the Bayesian dynamic survival model in medicine. Stat Med, 2010, 29(3): 347-360. | 
				                                                        
				                                                            
				                                                                | 38. | Li H, Weng J, Mao Y, et al. Adaptive dropout method based on biological principles. IEEE Trans Neural Netw Learn Syst, 2021, 32(9): 4267-4276. | 
				                                                        
				                                                            
				                                                                | 39. | Andrinopoulou ER, Rizopoulos D, Jin R, et al. An introduction to mixed models and joint modeling: analysis of valve function over time. Ann Thorac Surg, 2012, 93(6): 1765-1772. | 
				                                                        
				                                                            
				                                                                | 40. | Parast L, Mathews M, Friedberg MW. Dynamic risk prediction for diabetes using biomarker change measurements. BMC Med Res Methodol, 2019, 19(1): 175. |