1. |
Taraseviciene-Stewart L, Douglas IS, Nana-Sinkam PS, et al. Is alveolar destruction and emphysema in chronic obstructive pulmonary disease an immune disease? Proc Am Thorac Soc, 2006, 3(8): 687-690.
|
2. |
Xia X, Xiang X, Huang F, et al. Dietary canolol induces apoptosis in human cervical carcinoma HeLa cells through ROS-MAPK mediated mitochondrial signaling pathway: in vitro and in vivo. Chem Biol Interact, 2019, 300: 138-150.
|
3. |
Purohit V, Abdelmalek MF, Barve S, et al. Role of S-adenosylmethionine, folate, and betaine in the treatment of alcoholic liver disease: summary of a symposium. Am J Clin Nutr, 2007, 86(1): 14-24.
|
4. |
Ara AI, Xia M, Ramani K, et al. S-adenosylmethionine inhibits lipopolysaccharide -induced gene expression via modulation of histone methylation. Hepatology, 2008, 47(5): 1655-1666.
|
5. |
張野, 張程, 李夏, 等. SAM對大鼠自身免疫性肺氣腫氧化應激的干預. 重慶醫科大學學報, 2020, 45(11): 1528-1531.
|
6. |
He S, Li L, Sun S, et al. A novel murine chronic obstructive pulmonary disease model and the pathogenic role of microRNA-21. Front Physiol, 2018, 9: 503.
|
7. |
張順, 楊福全, 李航宇, 等. S-腺苷甲硫氨酸對大鼠重癥急性胰腺炎的保護作用. 中國現代普通外科進展, 2011, 14(9): 680-683.
|
8. |
Li D, Li BX, Zhang Y, et al. SAM protects against alveolar septal cell apoptosis in autoimmune emphysema rats. Eur J Med Res, 2023, 28(1): 460.
|
9. |
Li N, Dai Z, Wang Z, et al. Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease. Respir Res, 2021, 22(1): 274.
|
10. |
張靜, 郭一銘, 李恩紅, 等. 甘草甜素對小鼠矽肺纖維化的干預作用. 安徽醫科大學學報, 2022, 57(1): 121-125.
|
11. |
郭欣, 胡代菊, 梅曉冬. 煙霧暴露小鼠肺部氧化應激與炎癥的變化及戒煙的影響. 安徽醫科大學學報, 2015, 50(6): 757-760.
|
12. |
李正歡, 張曉云, 陳楊, 等. 2020年慢性阻塞性肺疾病全球倡議《COPD診斷、治療與預防全球策略》指南解讀(一)穩定期藥物管理. 中國全科醫學, 2021, 24(8): 923-929.
|
13. |
Josephs L, Culliford D, Johnson M, et al. Improved outcomes in ex-smokers with COPD: a UK primary care observational cohort study. Eur Respir J, 2017, 49(5): 1602114.
|
14. |
Yan H, Zhao L, Wu X, et al. Inflammation and pathological damage to the lungs of mice are only partially reversed following smoking cessation on subacute exposure to cigarette smoke. Mol Med Rep, 2015, 11(6): 4246-4254.
|
15. |
De Cunto G, Bartalesi B, Cavarra E, et al. Ongoing lung inflammation and disease progression in mice after smoking cessation: beneficial effects of formyl-peptide receptor blockade. Am J Pathol, 2018, 188(10): 2195-2206.
|
16. |
Brunnquell CR, Vieira NA, Sábio LR, et al. Oxidative and proteolysis-related parameters of skeletal muscle from hamsters with experimental pulmonary emphysema: a comparison between papain and elastase induction. Int J Exp Pathol, 2015, 96(3): 140-150.
|
17. |
Liu X, Ma C, Wang X, et al. Hydrogen coadministration slows the development of COPD-like lung disease in a cigarette smoke-induced rat model. Int J Chron Obstruct Pulmon Dis, 2017, 12: 1309-1324.
|
18. |
張倩, 黃萍, 李艷, 等. 腹腔注射煙草煙霧提取物制備小鼠慢性阻塞性肺疾病模型的評價. 中華結核和呼吸雜志, 2015, 38(4): 279-285.
|
19. |
Zhong H, Yuan P, Li Y, et al. Methionine protects mammary cells against oxidative stress through producing S-adenosylmethionine to maintain mTORC1 signaling activity. Oxid Med Cell Longev, 2021, 2021: 5550196.
|
20. |
Taylor Levine M, Gao J, Satyanarayanan SK, et al. S-adenosyl-l-methionine (SAMe), cannabidiol (CBD), and kratom in psychiatric disorders: clinical and mechanistic considerations. Brain Behav Immun, 2020, 85: 152-161.
|
21. |
Liu J, Huang J, Xin P, et al. Biomedical applications of methionine-based systems. Biomater Sci, 2021, 9(6): 1961-1973.
|