Citation: 王東梅, 熊偉, 韓鋒鋒. 肺癌引發靜脈血栓栓塞癥發病機制的研究進展. Chinese Journal of Respiratory and Critical Care Medicine, 2023, 22(2): 135-141. doi: 10.7507/1671-6205.202206054 Copy
Copyright ? the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
| 1. | Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021, 71(3): 209-249. |
| 2. | Chew HK, Wun T, Harvey D, et al. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch Intern Med, 2006, 166(4): 458-464. |
| 3. | Walker AJ, Card TR, West J, et al. Incidence of venous thromboembolism in patients with cancer - a cohort study using linked United Kingdom databases. Eur J Cancer, 2013, 49(6): 1404-1413. |
| 4. | Mulder FI, Horváth-Puhó E, van Es N, et al. Venous thromboembolism in cancer patients: a population-based cohort study. Blood, 2021, 137(14): 1959-1969. |
| 5. | Streiff MB, Holmstrom B, Angelini D, et al. Cancer-Associated Venous Thromboembolic Disease, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw, 2021, 19(10): 1181-1201. |
| 6. | Jiao YH, Guo LL, Wu LQ, et al. Relationship between hypercoagulable state and circulating tumor cells in peripheral blood, pathological characteristics, and prognosis of lung cancer patients. Evid Based Complement Alternat Med, 2021, 2021: 5732222. |
| 7. | Labianca A, Bosetti T, Indini A, et al. Risk prediction and new prophylaxis strategies for thromboembolism in cancer. Cancers (Basel), 2020, 12(8): 2070. |
| 8. | Fernandez PM, Rickles FR. Tissue factor and angiogenesis in cancer. Curr Opin Hematol, 2002, 9(5): 401-406. |
| 9. | Rickles FR, Shoji M, Abe K. The role of the hemostatic system in tumor growth, metastasis, and angiogenesis: tissue factor is a bifunctional molecule capable of inducing both fibrin deposition and angiogenesis in cancer. Int J Hematol, 2001, 73(2): 145-150. |
| 10. | Peppelenbosch MP, Versteeg HH. Cell biology of tissue factor, an unusual member of the cytokine receptor family. Trends Cardiovasc Med, 2001, 11(8): 335-339. |
| 11. | 潘俞丹. 組織因子在惡性腫瘤合并肺血栓栓塞癥患者血清中的表達研究. 廣西醫科大學, 2015. |
| 12. | Cong Y, Li QR, Zhang XS, et al. mTOR promotes tissue factor expression and activity in EGFR-mutant cancer. Front Oncol, 2020, 10: 1615. |
| 13. | Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell, 2012, 149(2): 274-293. |
| 14. | Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol, 2011, 12(1): 21-35. |
| 15. | Hsieh KY, Wei CK, Wu CC. YC-1 prevents tumor-associated tissue factor expression and procoagulant activity in hypoxic conditions by inhibiting p38/NF-κB signaling pathway. Int J Mol Sci, 2019, 20(2): 244. |
| 16. | Teng CM, Wu CC, Ko FN, et al. YC-1, a nitric oxide-independent activator of soluble guanylate cyclase, inhibits platelet-rich thrombosis in mice. Eur J Pharmacol, 1997, 320(2-3): 161-166. |
| 17. | Narita I, Shimada M, Yamabe H, et al. NF-κB-dependent increase in tissue factor expression is responsible for hypoxic podocyte injury. Clin Exp Nephrol, 2016, 20(5): 679-688. |
| 18. | Irigoyen JP, Mu?oz-Cánoves P, Montero L, et al. The plasminogen activator system: biology and regulation. Cell Mol Life Sci, 1999, 56(1-2): 104-132. |
| 19. | Zhu CJ, Shen H, Zhu LJ, et al. Plasminogen activator inhibitor 1 promotes immunosuppression in human non-small cell lung cancers by enhancing TGF-Β1 expression in macrophage. Cell Physiol Biochem, 2017, 44(6): 2201-2211. |
| 20. | Chen N, Ren M, Li R, et al. Bevacizumab promotes venous thromboembolism through the induction of PAI-1 in a mouse xenograft model of human lung carcinoma. Mol Cancer, 2015, 14: 140. |
| 21. | Spiel AO, Bartko J, Schwameis M, et al. Increased platelet aggregation and in vivo platelet activation after granulocyte colony-stimulating factor administration. A randomised controlled trial. Thromb Haemost, 2011, 105(4): 655-662. |
| 22. | Nadir Y. Heparanase in the coagulation system. Adv Exp Med Biol, 2020, 1221: 771-784. |
| 23. | Yin WC, Lv JY, Yao YH, et al. Elevations of monocyte and neutrophils, and higher levels of granulocyte colony-stimulating factor in peripheral blood in lung cancer patients. Thorac Cancer, 2021, 12(20): 2680-2690. |
| 24. | Demers M, Krause DS, Schatzberg D, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A, 2012, 109(32): 13076-13081. |
| 25. | Olsson AK, Cedervall J. NETosis in cancer-platelet-neutrophil crosstalk promotes tumor-associated pathology. Front Immunol, 2016, 7: 373. |
| 26. | Demers M, Wagner DD. Neutrophil extracellular traps: a new link to cancer-associated thrombosis and potential implications for tumor progression. Oncoimmunology, 2013, 2(2): e22946. |
| 27. | Demers M, Wong SL, Martinod K, et al. Priming of neutrophils toward NETosis promotes tumor growth. Oncoimmunology, 2016, 5: e1134073. |
| 28. | Hisada Y, Mackman N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood, 2017, 130(13): 1499-1506. |
| 29. | Masucci MT, Minopoli M, Del Vecchio S, et al. The emerging role of neutrophil extracellular traps (NETs) in tumor progression and metastasis. Front Immunol, 2020, 11: 1749. |
| 30. | Papayannopoulos V, Metzler KD, Hakkim A, et al. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol, 2010, 191(3): 677-691. |
| 31. | Th?lin C, Hisada Y, Lundstr?m S, et al. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler Thromb Vasc Biol, 2019, 39(9): 1724-1738. |
| 32. | Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A, 2010, 107(36): 15880-15885. |
| 33. | McInturff AM, Cody MJ, Elliott EA, et al. Mammalian target of rapamycin regulates neutrophil extracellular trap formation via induction of hypoxia-inducible factor 1 α. Blood, 2012, 120(15): 3118-3125. |
| 34. | Li Y, Yang Yl, Gan TT, et al. Extracellular RNAs from lung cancer cells activate epithelial cells and induce neutrophil extracellular traps. Int J Oncol, 2019, 55(1): 69-80. |
| 35. | Li TW, Peng R, Wang F, et al. Lysophosphatidic acid promotes thrombus stability by inducing rapid formation of neutrophil extracellular traps: a new mechanism of thrombosis. J Thromb Haemost, 2020, 18(8): 1952-1964. |
| 36. | He J, Gao R, Meng M, et al. Lysophosphatidic acid receptor 6 (LPAR6) is a potential biomarker associated with lung adenocarcinoma. Int J Environ Res Public Health, 2021, 18(21): 11038. |
| 37. | van Dongen HM, Masoumi N, Witwer KW, et al. Extracellular vesicles exploit viral entry routes for cargo delivery. Microbiol Mol Biol Rev, 2016, 80(2): 369-386. |
| 38. | Dvorak HF, Quay SC, Orenstein NS, et al. Tumor shedding and coagulation. Science, 1981, 212(4497): 923-924. |
| 39. | Zhou L, Qi XL, Xu MX, et al. Microparticles: new light shed on the understanding of venous thromboembolism. Acta Pharmacol Sin, 2014, 35(9): 1103-1110. |
| 40. | Shim YJ, Chatterjee V, Swaidani S, et al. Polyphosphate expression by cancer cell extracellular vesicles mediates binding of factor XII and contact activation. Blood Adv, 2021, 5(22): 4741-4751. |
| 41. | Thomas GM, Panicot-Dubois L, Lacroix R, et al. Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. J Exp Med, 2009, 206(9): 1913-1927. |
| 42. | Y?ld?z A, Katar D, Soyda? A?, et al. Association of thrombin-activatable fibrinolysis inhibitor with acute pulmonary embolism. Hamostaseologie, 2022, 42(3): 180-184. |
| 43. | Zidane M, de Visser MC, ten Wolde M, et al. Frequency of the TAFI -438 G/A and factor XIIIA Val34Leu polymorphisms in patients with objectively proven pulmonary embolism. Thromb Haemost, 2003, 90(3): 439-445. |
| 44. | Sansilvestri-Morel P, Rupin A, Schaffner AP, et al. S62798, a potent TAFIa inhibitor, accelerates endogenous fibrinolysis in a murine model of pulmonary thromboembolism. Thromb Res, 2021, 204: 81-87. |
| 45. | Hataji O, Taguchi O, Gabazza EC, et al. Increased circulating levels of thrombin-activatable fibrinolysis inhibitor in lung cancer patients. Am J Hematol, 2004, 76(3): 214-219. |
| 46. | Bajzar L. Thrombin activatable fibrinolysis inhibitor and an antifibrinolytic pathway. Arterioscler Thromb Vasc Biol, 2000, 20(12): 2511-2518. |
| 47. | Ay C, Simanek R, Vormittag R, et al. High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). Blood, 2008, 112(7): 2703-2708. |
| 48. | Castellón Rubio VE, Segura PP, Mu?oz A, et al. High plasma levels of soluble P-selectin and factor VIII predict venous thromboembolism in non-small cell lung cancer patients: the Thrombo-NSCLC risk score. Thromb Res, 2020, 196: 349-354. |
| 49. | Feng QQ, Wang MY, Muhtar E, et al. Nanoparticles of a new small-molecule P-selectin inhibitor attenuate thrombosis, inflammation, and tumor growth in two animal models. Int J Nanomedicine, 2021, 16: 5777-5795. |
| 50. | Ivanov II, Apta BHR, Bonna AM, et al. Platelet P-selectin triggers rapid surface exposure of tissue factor in monocytes. Sci Rep, 2019, 9(1): 13397. |
| 51. | Vlodavsky I, Gross-Cohen M, Weissmann M, et al. Opposing functions of heparanase-1 and heparanase-2 in cancer progression. Trends Biochem Sci, 2018, 43(1): 18-31. |
| 52. | Nadir Y, Brenner B, Zetser A, et al. Heparanase induces tissue factor expression in vascular endothelial and cancer cells. J Thromb Haemost, 2006, 4(11): 2443-2451. |
| 53. | Nadir Y, Brenner B, Gingis-Velitski S, et al. Heparanase induces tissue factor pathway inhibitor expression and extracellular accumulation in endothelial and tumor cells. Thromb Haemost, 2008, 99(1): 133-141. |
| 54. | Nadir Y, Brenner B, Fux L, et al. Heparanase enhances the generation of activated factor X in the presence of tissue factor and activated factor VII. Haematologica, 2010, 95(11): 1927-1934. |
| 55. | Nasser NJ, Fox J, Agbarya A. Potential mechanisms of cancer-related hypercoagulability. Cancers (Basel), 2020, 12(3): 566. |
| 56. | Cohen E, Doweck I, Naroditsky I, et al. Heparanase is overexpressed in lung cancer and correlates inversely with patient survival. Cancer, 2008, 113(5): 1004-1011. |
| 57. | Nadir Y, Sarig G, Axelman E, et al. Heparanase procoagulant activity is elevated and predicts survival in non-small cell lung cancer patients. Thromb Res, 2014, 134(3): 639-642. |
| 58. | Crispel Y, Ghanem S, Attias J, et al. Involvement of the heparanase procoagulant domain in bleeding and wound healing. J Thromb Haemost, 2017, 15(7): 1463-1472. |
| 59. | Olas B, Mielicki WP, Wachowicz B, et al. Cancer procoagulant stimulates platelet adhesion. Thromb Res, 1999, 94(3): 199-203. |
| 60. | 崔松平, 李輝. 《胸部惡性腫瘤圍術期靜脈血栓栓塞癥預防中國專家共識(2018版)》解讀之圍術期高凝狀態篇. 中國肺癌雜志, 2019, 22(12): 752-756. |
| 61. | Nakano K, Sugiyama K, Satoh H, et al. Risk factors for disseminated intravascular coagulation in patients with lung cancer. Thorac Cancer, 2018, 9(8): 931-938. |
| 62. | 顧瑛, 趙三紅, 高艷章. 45例惡性腫瘤患者血液流變學指標檢測與分析. 檢驗醫學與臨床, 2009, 6(1): 24-25. |
| 63. | 郭琪, 王偉, 汪領, 等. 紅細胞沉降率、血清鐵蛋白檢測在肺癌診斷、病情評估中的應用價值. 癌癥進展, 2022, 20(13): 1357-1359. |
| 64. | 陳國榮. 惡性腫瘤患者血栓的形成機制與診斷進展. 新鄉醫學院學報, 2015, 32(9): 891-893. |
| 65. | Lechner D, Kollars M, Gleiss A, et al. Chemotherapy-induced thrombin generation via procoagulant endothelial microparticles is independent of tissue factor activity. J Thromb Haemost, 2007, 5(12): 2445-2452. |
| 66. | O'Keeffe LM, Taylor G, Huxley RR, et al. Smoking as a risk factor for lung cancer in women and men: a systematic review and meta-analysis. BMJ Open, 2018, 8(10): e021611. |
| 67. | Cheng YJ, Liu ZH, Yao FJ, et al. Current and former smoking and risk for venous thromboembolism: a systematic review and meta-analysis. PLoS Med, 2013, 10: e1001515. |
| 68. | Li MZ, Yu DM, Williams KJ, et al. Tobacco smoke induces the generation of procoagulant microvesicles from human monocytes/macrophages. Arterioscler Thromb Vasc Biol, 2010, 30(9): 1818-1824. |
| 69. | Chen S, Wang Y, Zhang HL, et al. The antioxidant MitoQ protects against CSE-induced endothelial barrier injury and inflammation by inhibiting ROS and autophagy in human umbilical vein endothelial cells. Int J Biol Sci, 2019, 15(7): 1440-1451. |
| 70. | Kumboyono K, Nurwidyaningtyas W, Chomsy IN, et al. Early detection of negative smoking impacts: vascular adaptation deviation based on quantification of circulated endothelial activation markers. Vasc Health Risk Manag, 2021, 17: 103-109. |
| 71. | Goldman JW, Dvorkin M, Chen YB, et al. Durvalumab, with or without tremelimumab, plus platinum-etoposide versus platinum-etoposide alone in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): updated results from a randomised, controlled, open-label, phase 3 trial. Lancet Oncol, 2021, 22(1): 51-65. |
| 72. | Cho BC, Kim DW, Park K, et al. Real-world use of osimertinib in non-small cell lung cancer: ASTRIS study Korean subgroup analysis. Curr Med Res Opin, 2020, 36(3): 477-482. |
| 73. | Ma RS, Bi YY, Kou JJ, et al. Enhanced procoagulant activity of platelets after chemotherapy in non-small cell lung cancer. Cancer Biol Ther, 2017, 18(8): 627-634. |
- 1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021, 71(3): 209-249.
- 2. Chew HK, Wun T, Harvey D, et al. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch Intern Med, 2006, 166(4): 458-464.
- 3. Walker AJ, Card TR, West J, et al. Incidence of venous thromboembolism in patients with cancer - a cohort study using linked United Kingdom databases. Eur J Cancer, 2013, 49(6): 1404-1413.
- 4. Mulder FI, Horváth-Puhó E, van Es N, et al. Venous thromboembolism in cancer patients: a population-based cohort study. Blood, 2021, 137(14): 1959-1969.
- 5. Streiff MB, Holmstrom B, Angelini D, et al. Cancer-Associated Venous Thromboembolic Disease, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw, 2021, 19(10): 1181-1201.
- 6. Jiao YH, Guo LL, Wu LQ, et al. Relationship between hypercoagulable state and circulating tumor cells in peripheral blood, pathological characteristics, and prognosis of lung cancer patients. Evid Based Complement Alternat Med, 2021, 2021: 5732222.
- 7. Labianca A, Bosetti T, Indini A, et al. Risk prediction and new prophylaxis strategies for thromboembolism in cancer. Cancers (Basel), 2020, 12(8): 2070.
- 8. Fernandez PM, Rickles FR. Tissue factor and angiogenesis in cancer. Curr Opin Hematol, 2002, 9(5): 401-406.
- 9. Rickles FR, Shoji M, Abe K. The role of the hemostatic system in tumor growth, metastasis, and angiogenesis: tissue factor is a bifunctional molecule capable of inducing both fibrin deposition and angiogenesis in cancer. Int J Hematol, 2001, 73(2): 145-150.
- 10. Peppelenbosch MP, Versteeg HH. Cell biology of tissue factor, an unusual member of the cytokine receptor family. Trends Cardiovasc Med, 2001, 11(8): 335-339.
- 11. 潘俞丹. 組織因子在惡性腫瘤合并肺血栓栓塞癥患者血清中的表達研究. 廣西醫科大學, 2015.
- 12. Cong Y, Li QR, Zhang XS, et al. mTOR promotes tissue factor expression and activity in EGFR-mutant cancer. Front Oncol, 2020, 10: 1615.
- 13. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell, 2012, 149(2): 274-293.
- 14. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol, 2011, 12(1): 21-35.
- 15. Hsieh KY, Wei CK, Wu CC. YC-1 prevents tumor-associated tissue factor expression and procoagulant activity in hypoxic conditions by inhibiting p38/NF-κB signaling pathway. Int J Mol Sci, 2019, 20(2): 244.
- 16. Teng CM, Wu CC, Ko FN, et al. YC-1, a nitric oxide-independent activator of soluble guanylate cyclase, inhibits platelet-rich thrombosis in mice. Eur J Pharmacol, 1997, 320(2-3): 161-166.
- 17. Narita I, Shimada M, Yamabe H, et al. NF-κB-dependent increase in tissue factor expression is responsible for hypoxic podocyte injury. Clin Exp Nephrol, 2016, 20(5): 679-688.
- 18. Irigoyen JP, Mu?oz-Cánoves P, Montero L, et al. The plasminogen activator system: biology and regulation. Cell Mol Life Sci, 1999, 56(1-2): 104-132.
- 19. Zhu CJ, Shen H, Zhu LJ, et al. Plasminogen activator inhibitor 1 promotes immunosuppression in human non-small cell lung cancers by enhancing TGF-Β1 expression in macrophage. Cell Physiol Biochem, 2017, 44(6): 2201-2211.
- 20. Chen N, Ren M, Li R, et al. Bevacizumab promotes venous thromboembolism through the induction of PAI-1 in a mouse xenograft model of human lung carcinoma. Mol Cancer, 2015, 14: 140.
- 21. Spiel AO, Bartko J, Schwameis M, et al. Increased platelet aggregation and in vivo platelet activation after granulocyte colony-stimulating factor administration. A randomised controlled trial. Thromb Haemost, 2011, 105(4): 655-662.
- 22. Nadir Y. Heparanase in the coagulation system. Adv Exp Med Biol, 2020, 1221: 771-784.
- 23. Yin WC, Lv JY, Yao YH, et al. Elevations of monocyte and neutrophils, and higher levels of granulocyte colony-stimulating factor in peripheral blood in lung cancer patients. Thorac Cancer, 2021, 12(20): 2680-2690.
- 24. Demers M, Krause DS, Schatzberg D, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A, 2012, 109(32): 13076-13081.
- 25. Olsson AK, Cedervall J. NETosis in cancer-platelet-neutrophil crosstalk promotes tumor-associated pathology. Front Immunol, 2016, 7: 373.
- 26. Demers M, Wagner DD. Neutrophil extracellular traps: a new link to cancer-associated thrombosis and potential implications for tumor progression. Oncoimmunology, 2013, 2(2): e22946.
- 27. Demers M, Wong SL, Martinod K, et al. Priming of neutrophils toward NETosis promotes tumor growth. Oncoimmunology, 2016, 5: e1134073.
- 28. Hisada Y, Mackman N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood, 2017, 130(13): 1499-1506.
- 29. Masucci MT, Minopoli M, Del Vecchio S, et al. The emerging role of neutrophil extracellular traps (NETs) in tumor progression and metastasis. Front Immunol, 2020, 11: 1749.
- 30. Papayannopoulos V, Metzler KD, Hakkim A, et al. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol, 2010, 191(3): 677-691.
- 31. Th?lin C, Hisada Y, Lundstr?m S, et al. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler Thromb Vasc Biol, 2019, 39(9): 1724-1738.
- 32. Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A, 2010, 107(36): 15880-15885.
- 33. McInturff AM, Cody MJ, Elliott EA, et al. Mammalian target of rapamycin regulates neutrophil extracellular trap formation via induction of hypoxia-inducible factor 1 α. Blood, 2012, 120(15): 3118-3125.
- 34. Li Y, Yang Yl, Gan TT, et al. Extracellular RNAs from lung cancer cells activate epithelial cells and induce neutrophil extracellular traps. Int J Oncol, 2019, 55(1): 69-80.
- 35. Li TW, Peng R, Wang F, et al. Lysophosphatidic acid promotes thrombus stability by inducing rapid formation of neutrophil extracellular traps: a new mechanism of thrombosis. J Thromb Haemost, 2020, 18(8): 1952-1964.
- 36. He J, Gao R, Meng M, et al. Lysophosphatidic acid receptor 6 (LPAR6) is a potential biomarker associated with lung adenocarcinoma. Int J Environ Res Public Health, 2021, 18(21): 11038.
- 37. van Dongen HM, Masoumi N, Witwer KW, et al. Extracellular vesicles exploit viral entry routes for cargo delivery. Microbiol Mol Biol Rev, 2016, 80(2): 369-386.
- 38. Dvorak HF, Quay SC, Orenstein NS, et al. Tumor shedding and coagulation. Science, 1981, 212(4497): 923-924.
- 39. Zhou L, Qi XL, Xu MX, et al. Microparticles: new light shed on the understanding of venous thromboembolism. Acta Pharmacol Sin, 2014, 35(9): 1103-1110.
- 40. Shim YJ, Chatterjee V, Swaidani S, et al. Polyphosphate expression by cancer cell extracellular vesicles mediates binding of factor XII and contact activation. Blood Adv, 2021, 5(22): 4741-4751.
- 41. Thomas GM, Panicot-Dubois L, Lacroix R, et al. Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. J Exp Med, 2009, 206(9): 1913-1927.
- 42. Y?ld?z A, Katar D, Soyda? A?, et al. Association of thrombin-activatable fibrinolysis inhibitor with acute pulmonary embolism. Hamostaseologie, 2022, 42(3): 180-184.
- 43. Zidane M, de Visser MC, ten Wolde M, et al. Frequency of the TAFI -438 G/A and factor XIIIA Val34Leu polymorphisms in patients with objectively proven pulmonary embolism. Thromb Haemost, 2003, 90(3): 439-445.
- 44. Sansilvestri-Morel P, Rupin A, Schaffner AP, et al. S62798, a potent TAFIa inhibitor, accelerates endogenous fibrinolysis in a murine model of pulmonary thromboembolism. Thromb Res, 2021, 204: 81-87.
- 45. Hataji O, Taguchi O, Gabazza EC, et al. Increased circulating levels of thrombin-activatable fibrinolysis inhibitor in lung cancer patients. Am J Hematol, 2004, 76(3): 214-219.
- 46. Bajzar L. Thrombin activatable fibrinolysis inhibitor and an antifibrinolytic pathway. Arterioscler Thromb Vasc Biol, 2000, 20(12): 2511-2518.
- 47. Ay C, Simanek R, Vormittag R, et al. High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). Blood, 2008, 112(7): 2703-2708.
- 48. Castellón Rubio VE, Segura PP, Mu?oz A, et al. High plasma levels of soluble P-selectin and factor VIII predict venous thromboembolism in non-small cell lung cancer patients: the Thrombo-NSCLC risk score. Thromb Res, 2020, 196: 349-354.
- 49. Feng QQ, Wang MY, Muhtar E, et al. Nanoparticles of a new small-molecule P-selectin inhibitor attenuate thrombosis, inflammation, and tumor growth in two animal models. Int J Nanomedicine, 2021, 16: 5777-5795.
- 50. Ivanov II, Apta BHR, Bonna AM, et al. Platelet P-selectin triggers rapid surface exposure of tissue factor in monocytes. Sci Rep, 2019, 9(1): 13397.
- 51. Vlodavsky I, Gross-Cohen M, Weissmann M, et al. Opposing functions of heparanase-1 and heparanase-2 in cancer progression. Trends Biochem Sci, 2018, 43(1): 18-31.
- 52. Nadir Y, Brenner B, Zetser A, et al. Heparanase induces tissue factor expression in vascular endothelial and cancer cells. J Thromb Haemost, 2006, 4(11): 2443-2451.
- 53. Nadir Y, Brenner B, Gingis-Velitski S, et al. Heparanase induces tissue factor pathway inhibitor expression and extracellular accumulation in endothelial and tumor cells. Thromb Haemost, 2008, 99(1): 133-141.
- 54. Nadir Y, Brenner B, Fux L, et al. Heparanase enhances the generation of activated factor X in the presence of tissue factor and activated factor VII. Haematologica, 2010, 95(11): 1927-1934.
- 55. Nasser NJ, Fox J, Agbarya A. Potential mechanisms of cancer-related hypercoagulability. Cancers (Basel), 2020, 12(3): 566.
- 56. Cohen E, Doweck I, Naroditsky I, et al. Heparanase is overexpressed in lung cancer and correlates inversely with patient survival. Cancer, 2008, 113(5): 1004-1011.
- 57. Nadir Y, Sarig G, Axelman E, et al. Heparanase procoagulant activity is elevated and predicts survival in non-small cell lung cancer patients. Thromb Res, 2014, 134(3): 639-642.
- 58. Crispel Y, Ghanem S, Attias J, et al. Involvement of the heparanase procoagulant domain in bleeding and wound healing. J Thromb Haemost, 2017, 15(7): 1463-1472.
- 59. Olas B, Mielicki WP, Wachowicz B, et al. Cancer procoagulant stimulates platelet adhesion. Thromb Res, 1999, 94(3): 199-203.
- 60. 崔松平, 李輝. 《胸部惡性腫瘤圍術期靜脈血栓栓塞癥預防中國專家共識(2018版)》解讀之圍術期高凝狀態篇. 中國肺癌雜志, 2019, 22(12): 752-756.
- 61. Nakano K, Sugiyama K, Satoh H, et al. Risk factors for disseminated intravascular coagulation in patients with lung cancer. Thorac Cancer, 2018, 9(8): 931-938.
- 62. 顧瑛, 趙三紅, 高艷章. 45例惡性腫瘤患者血液流變學指標檢測與分析. 檢驗醫學與臨床, 2009, 6(1): 24-25.
- 63. 郭琪, 王偉, 汪領, 等. 紅細胞沉降率、血清鐵蛋白檢測在肺癌診斷、病情評估中的應用價值. 癌癥進展, 2022, 20(13): 1357-1359.
- 64. 陳國榮. 惡性腫瘤患者血栓的形成機制與診斷進展. 新鄉醫學院學報, 2015, 32(9): 891-893.
- 65. Lechner D, Kollars M, Gleiss A, et al. Chemotherapy-induced thrombin generation via procoagulant endothelial microparticles is independent of tissue factor activity. J Thromb Haemost, 2007, 5(12): 2445-2452.
- 66. O'Keeffe LM, Taylor G, Huxley RR, et al. Smoking as a risk factor for lung cancer in women and men: a systematic review and meta-analysis. BMJ Open, 2018, 8(10): e021611.
- 67. Cheng YJ, Liu ZH, Yao FJ, et al. Current and former smoking and risk for venous thromboembolism: a systematic review and meta-analysis. PLoS Med, 2013, 10: e1001515.
- 68. Li MZ, Yu DM, Williams KJ, et al. Tobacco smoke induces the generation of procoagulant microvesicles from human monocytes/macrophages. Arterioscler Thromb Vasc Biol, 2010, 30(9): 1818-1824.
- 69. Chen S, Wang Y, Zhang HL, et al. The antioxidant MitoQ protects against CSE-induced endothelial barrier injury and inflammation by inhibiting ROS and autophagy in human umbilical vein endothelial cells. Int J Biol Sci, 2019, 15(7): 1440-1451.
- 70. Kumboyono K, Nurwidyaningtyas W, Chomsy IN, et al. Early detection of negative smoking impacts: vascular adaptation deviation based on quantification of circulated endothelial activation markers. Vasc Health Risk Manag, 2021, 17: 103-109.
- 71. Goldman JW, Dvorkin M, Chen YB, et al. Durvalumab, with or without tremelimumab, plus platinum-etoposide versus platinum-etoposide alone in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): updated results from a randomised, controlled, open-label, phase 3 trial. Lancet Oncol, 2021, 22(1): 51-65.
- 72. Cho BC, Kim DW, Park K, et al. Real-world use of osimertinib in non-small cell lung cancer: ASTRIS study Korean subgroup analysis. Curr Med Res Opin, 2020, 36(3): 477-482.
- 73. Ma RS, Bi YY, Kou JJ, et al. Enhanced procoagulant activity of platelets after chemotherapy in non-small cell lung cancer. Cancer Biol Ther, 2017, 18(8): 627-634.
-
Previous Article
以夜間遺尿為首發癥狀的阻塞性睡眠呼吸暫停低通氣綜合征一例 -
Next Article
高海拔旅行相關靜脈血栓栓塞癥研究進展

