| 1. |
From the Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease: the GOLD science committee report 2022. Available at: https://goldcopd. org/2022-gold-reports-2/.
|
| 2. |
Marushchak M, Maksiv K, Krynytska I, et al. Glutathione antioxidant system of lymphocytes in the blood of patients in a setting of concomitant chronic obstructive pulmonary disease and arterial hypertension. Pol Merkur Lekarski, 2019, 47(281): 177-182.
|
| 3. |
武秀亭, 趙博. 慢性阻塞性肺疾病患者的氧化應激改變與診療研究進展. 實用臨床醫藥雜志, 2020, 24(15): 126-128, 132.
|
| 4. |
Jiang Y, Wang XQ, Hu DD. Mitochondrial alterations during oxidative stress in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis, 2017, 12: 1153-1162.
|
| 5. |
Mizumura K, Gon Y. Iron-regulated reactive oxygen species production and programmed cell death in chronic obstructive pulmonary disease. Antioxidants (Basel), 2021, 10(10): 1569.
|
| 6. |
Barnes PJ. Oxidative stress in chronic obstructive pulmonary disease. Antioxidants (Basel), 2022, 11(5): 965.
|
| 7. |
Cloonan SM, Kim K, Esteves P, et al. Mitochondrial dysfunction in lung ageing and disease. Eur Respir Rev, 2020, 29(157): 200165.
|
| 8. |
Xu Y, Liu HM, Song L. Novel drug delivery systems targeting oxidative stress in chronic obstructive pulmonary disease: a review. J Nanobiotechnology, 2020, 18(1): 145.
|
| 9. |
Caramori G, Adcock IM, Casolari P, et al. Unbalanced oxidant-induced DNA damage and repair in COPD: a link towards lung cancer. Thorax, 2011, 66(6): 521-527.
|
| 10. |
Barnes P, Burney P, Silverman E, et al. Chronic obstructive pulmonary disease. Nat Rev Dis Primers, 2015, 1: 15076.
|
| 11. |
Taniguchi A, Tsuge M, Miyahara N, et al. Reactive oxygen species and antioxidative defense in chronic obstructive pulmonary disease. Antioxidants (Basel), 2021, 10(10): 1537.
|
| 12. |
Vézina FA, Cantin AM. Antioxidants and chronic obstructive pulmonary disease. Chronic Obstr Pulm Dis, 2018, 5(4): 277-288.
|
| 13. |
郭美華, 王健, 鐘南山, 等. 氧化應激在慢性阻塞性肺疾病發病中的作用及機制研究. 中華結核和呼吸雜志, 2015, 38(3): 222-224.
|
| 14. |
Erden ES, Motor S, Ustun I, et al. Investigation of bisphenol A as an endocrine disruptor, total thiol, malondialdehyde, and C-reactive protein levels in chronic obstructive pulmonary disease. Eur Rev Med Pharmacol Sci, 2014, 18(22): 3477-3483.
|
| 15. |
Zinellu E, Zinellu A, Fois AG, et al. Circulating biomarkers of oxidative stress in chronic obstructive pulmonary disease: a systematic review. Respir Res, 2016, 17(1): 150.
|
| 16. |
Ahmad A, Shameem M, Husain Q. Altered oxidant-antioxidant levels in the disease prognosis of chronic obstructive pulmonary disease. Int J Tuberc Lung Dis, 2013, 17(8): 1104-1109.
|
| 17. |
Ilari S, Vitiello L, Russo P, et al. Daily vegetables intake and response to COPD rehabilitation. The role of oxidative stress, inflammation and DNA damage. Nutrients, 2021, 13(8): 2787.
|
| 18. |
Kim T, Choi H, Kim J. Association between dietary nutrient intake and chronic obstructive pulmonary disease severity: a nationwide population-based representative sample. COPD, 2020, 17(1): 49-58.
|
| 19. |
Pirabbasi E, Shahar S, Manaf ZA, et al. Efficacy of ascorbic acid (vitamin C) and/N-acetylcysteine (NAC) supplementation on nutritional and antioxidant status of male chronic obstructive pulmonary disease (COPD) patients. J Nutr Sci Vitaminol (Tokyo), 2016, 62(1): 54-61.
|
| 20. |
McGuinness AJ, Sapey E. Oxidative stress in COPD: sources, markers, and potential mechanisms. J Clin Med, 2017, 6(2): 21.
|
| 21. |
Aggarwal T, Wadhwa R, Rohil V, et al. Biomarkers of oxidative stress and protein-protein interaction in chronic obstructive pulmonary disease. Arch Physiol Biochem, 2018, 124(3): 226-231.
|
| 22. |
Yang HJ, Wang ZH, Xiao S, et al. Association between serum uric acid and lung function in people with and without chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis, 2022, 17: 1069-1080.
|
| 23. |
Rumora L, Hlap?i? I, Popovi?-Grle S, et al. Uric acid and uric acid to creatinine ratio in the assessment of chronic obstructive pulmonary disease: potential biomarkers in multicomponent models comprising IL-1beta. PloS one, 2020, 15(6): e0234363.
|
| 24. |
Tanwar Y, Singh C, Chakrabarty S. Comparison of serum uric acid levels in patients with stable chronic obstructive pulmonary disease and patients with acute exacerbation. J Assoc Physicians India, 2022, 70(4): 11-12.
|
| 25. |
Hwang JJ, Oh YM, Rhee CK, et al. Hyperuricemia is not predictive of long-term outcome in patients with stable chronic obstructive pulmonary disease. J Korean Med Sci, 2020, 35(8): e58.
|
| 26. |
Horsfall L J, Rait G, Walters K, et al. Serum bilirubin and risk of respiratory disease and death. JAMA, 2011, 305(7): 691-697.
|
| 27. |
莊瓊馨, 錢粉紅, 鄧霞, 等. 慢性阻塞性肺疾病急性加重期患者血漿纖維蛋白原和血清總膽紅素水平的變化. 中國醫藥, 2019, 14(7): 988-991.
|
| 28. |
趙玲, 張毛為, 李斯南, 等. 血清總膽紅素在慢性阻塞性肺病急性加重期的應用價值. 徐州醫科大學學報, 2019, 39(10): 721-724.
|
| 29. |
Leem AY, Kim YS, Lee JH, et al. Serum bilirubin level is associated with exercise capacity and quality of life in chronic obstructive pulmonary disease. Respir Res, 2019, 20(1): 279.
|
| 30. |
陳泳祥. COPD急性加重期伴呼吸衰竭患者氧化應激水平在其預后早期評估中的臨床價值. 中國醫學創新, 2017, 14(6): 1-5.
|
| 31. |
Zinellu E, Zinellu A, Fois AG, et al. Oxidative stress biomarkers in chronic obstructive pulmonary disease exacerbations: a systematic review. Antioxidants (Basel), 2021, 10(5): 710.
|
| 32. |
Hlavati M, Tomi? S, Buljan K, et al. Total antioxidant status in stable chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis, 2020, 15: 2411-2419.
|
| 33. |
Pandey S, Garg R, Kant S, et al. Vitamin D, C-reactive protein, and oxidative stress markers in chronic obstructive pulmonary disease. Tzu Chi Med J, 2019, 33(1): 80-86.
|
| 34. |
劉軍輝, 吳艷秋, 胡雪茹, 等. 隱丹參酮對卷煙誘導小鼠氣道炎癥與氧化應激的作用機制研究. 中國呼吸與危重監護雜志, 2022, 21(3): 189-194.
|
| 35. |
Sarangi R, Varadhan N, Bahinipati J, et al. Serum uric acid in chronic obstructive pulmonary disease: a hospital based case control study. J Clin Diagn Res:JCDR, 2017, 11(9): Bc09-Bc13.
|
| 36. |
Antus B, Paska C, Simon B, et al. Monitoring antioxidant enzyme activity during exacerbations of chronic obstructive pulmonary disease. COPD, 2018, 15(5): 496-502.
|
| 37. |
高云, 黨建麗. 慢性阻塞性肺疾病患者血清脂聯素、瘦素、IL-8及8-異前列腺素F2α水平與肺功能相關性的研究. 臨床肺科雜志, 2018, 23(11): 2091-2096.
|
| 38. |
ben Anes A, Fetoui H, Bchir S, et al. Increased oxidative stress and altered levels of nitric oxide and peroxynitrite in Tunisian patients with chronic obstructive pulmonary disease: correlation with disease severity and airflow obstruction. Biol Trace Elem Res, 2014, 161(1): 20-31.
|
| 39. |
Stanojkovic I, Kotur-Stevuljevic J, Milenkovic B, et al. Pulmonary function, oxidative stress and inflammatory markers in severe COPD exacerbation. Respir Med, 2011, 105 Suppl 1: S31-S37.
|
| 40. |
Liu X, Deng KL, Chen SX, et al. 8-Hydroxy-2’-deoxyguanosine as a biomarker of oxidative stress in acute exacerbation of chronic obstructive pulmonary disease. Turk J Med Sci, 2019, 49(1): 93-100.
|
| 41. |
Cao P, Zhang C, Hua DX, et al. Serum 8-hydroxy-2′-deoxyguanosine predicts severity and prognosis of patients with acute exacerbation of chronic obstructive pulmonary disease. Lung, 2022, 200(1): 31-39.
|
| 42. |
汪倩, 韓鋒鋒. 急性加重型慢性阻塞性肺疾病外周血生物標志物研究進展. 中國呼吸與危重監護雜志, 2021, 20(2): 143-147.
|
| 43. |
Stanojkovic I, Kotur-Stevuljevic J, Spasic S, et al. Relationship between bone resorption, oxidative stress and inflammation in severe COPD exacerbation. Clin Biochem, 2013, 46(16-17): 1678-1682.
|
| 44. |
吳挺實, 梁勇, 陳鈺. 慢性阻塞性肺疾病急性加重期患者的血小板活化及氧化應激變化研究. 檢驗醫學與臨床, 2016, 13(16): 2384-2386.
|
| 45. |
Li HQ, Hong W, Zeng ZX, et al. Association between extracellular superoxide dismutase activity and 1-year all-cause mortality in patients with acute exacerbations of chronic obstructive pulmonary disease: a prospective cohort study. Front Med (Lausanne), 2022, 9: 811975.
|