| 1. |
項春生, 李蘭娟. 腸道細菌微生態研究進展. 中國基礎科學, 2017, 19(2): 1-9+17.
|
| 2. |
Chotirmall SH, Gellatly SL, Budden KF, et al. Microbiomes in respiratory health and disease: an Asia-Pacific perspective. Respirology, 2017, 22(2): 240-250.
|
| 3. |
Birchenough GM, Nystr?m EE, Johansson ME, et al. A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science, 2016, 352(6293): 1535-1542.
|
| 4. |
Tang J, Xu L, Zeng Y, et al. Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway. Int Immunopharmacol, 2021, 91: 107272.
|
| 5. |
Grice EA, Segre JA. The human microbiome: our second genome. Annu Rev Genomics Hum Genet, 2012, 13: 151-170.
|
| 6. |
Wosinska L, Cotter PD, O'Sullivan O, et al. The potential impact of probiotics on the gut microbiome of athletes. Nutrients. 2019, 11(10): 2270. DOI: 10.3390/nu11102270.
|
| 7. |
Gérard P. Gut microbiota and obesity. Cell Mol Life Sci, 2016, 73(1): 147-162.
|
| 8. |
Tan J, McKenzie C, Potamitis M, et al. The role of short-chain fatty acids in health and disease. Adv Immunol, 2014, 121: 91-119.
|
| 9. |
Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol, 2019, 12(4): 843-850.
|
| 10. |
He LH, Ren LF, Li JF, et al. Intestinal flora as a potential strategy to fight SARS-CoV-2 infection. Front Microbiol, 2020, 11: 1388.
|
| 11. |
Budden KF, Gellatly SL, Wood DL, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol, 2017, 15(1): 55-63.
|
| 12. |
Brown RL, Sequeira RP, Clarke TB. The microbiota protects against respiratory infection via GM-CSF signaling. Nat Commun, 2017, 8(1): 1512.
|
| 13. |
Clarke TB. Early innate immunity to bacterial infection in the lung is regulated systemically by the commensal microbiota via nod-like receptor ligands. Infect Immun, 2014, 82(11): 4596-4606.
|
| 14. |
Wypych TP, Wickramasinghe LC, Marsland BJ. The influence of the microbiome on respiratory health. Nat Immunol, 2019, 20(10): 1279-1290.
|
| 15. |
Man WH, de Steenhuijsen Piters WA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol, 2017, 15(5): 259-270.
|
| 16. |
Chen Y, Jiang Z, Lei Z, et al. Effect of rifaximin on gut-lung axis in mice infected with influenza A virus. Comp Immunol Microbiol Infect Dis, 2021, 75: 101611.
|
| 17. |
劉國慧, 谷安鑫, 鄂明艷. 微生物組學在肺癌發生發展中的作用機制及研究進展. 中國肺癌雜志, 2020, 23(11): 948-953.
|
| 18. |
Trivedi R, Barve K. Gut microbiome a promising target for management of respiratory diseases. Biochem J, 2020, 477(14): 2679-2696.
|
| 19. |
Zheng Y, Fang Z, Xue Y, et al. Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes, 2020, 11(4): 1030-1042.
|
| 20. |
Lee SH, Sung JY, Yong D, et al. Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions. Lung Cancer, 2016, 102: 89-95.
|
| 21. |
Li CX, Liu HY, Lin YX, et al. The gut microbiota and respiratory diseases: new evidence. J Immunol Res, 2020, 2020: 2340670.
|
| 22. |
Klemenak M, Dolin?ek J, Langerholc T, et al. Administration of Bifidobacterium breve decreases the production of TNF-α in children with celiac disease. Dig Dis Sci, 2015, 60(11): 3386-3392.
|
| 23. |
Lee JW, Shin JG, Kim EH, et al. Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum. J Vet Sci, 2004, 5(1): 41-48. https://pubmed.ncbi.nlm.nih.gov/15028884/.
|
| 24. |
Mirzaei R, Afaghi A, Babakhani S, et al. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother, 2021, 139: 111619.
|
| 25. |
Schuijt TJ, Lankelma JM, Scicluna BP, et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut, 2016, 65(4): 575-583.
|
| 26. |
Donati Zeppa S, Agostini D, Piccoli G, et al. Gut microbiota status in COVID-19: an unrecognized player?. Front Cell Infect Microbiol, 2020, 10: 576551.
|
| 27. |
Namasivayam S, Sher A, Glickman MS, et al. The microbiome and tuberculosis: early evidence for cross talk. mBio, 2018, 9(5): e01420-18.
|
| 28. |
Wong EA, Evans S, Kraus CR, et al. IL-10 impairs local immune response in lung granulomas and lymph nodes during early mycobacterium tuberculosis infection. J Immunol, 2020, 204(3): 644-659.
|
| 29. |
譚惠子. 健康人群腸道中低豐度擬桿菌的篩選及生理作用研究[D]. 江南大學, 2019. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFDLAST2019&filename=1019019692.nh.
|
| 30. |
Round JL, Lee SM, Li J, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science, 2011, 332(6032): 974-977.
|
| 31. |
Negatu DA, Yamada Y, Xi Y, et al. Gut microbiota metabolite indole propionic acid targets tryptophan biosynthesis in mycobacterium tuberculosis. mBio, 2019, 10(2): e02781-18.
|
| 32. |
Li W, Zhu Y, Liao Q, et al. Characterization of gut microbiota in children with pulmonary tuberculosis. BMC Pediatr, 2019, 19(1): 445.
|
| 33. |
Hu Y, Yang Q, Liu B, et al. Gut microbiota associated with pulmonary tuberculosis and dysbiosis caused by anti-tuberculosis drugs. J Infect, 2019, 78(4): 317-322.
|
| 34. |
Dumas A, Corral D, Colom A, et al. The host microbiota contributes to early protection against lung colonization by Mycobacterium tuberculosis. Front Immunol, 2018, 9: 2656.
|
| 35. |
徐凱進, 蔡洪流, 沈毅弘, 等. 2019冠狀病毒病(COVID-19)診療浙江經驗. 浙江大學學報(醫學版) 2020, 49(1): 147-157.
|
| 36. |
de Oliveira AP, Lopes ALF, Pacheco G, et al. Premises among SARS-CoV-2, dysbiosis and diarrhea: walking through the ACE2/mTOR/autophagy route. Med Hypotheses, 2020, 144: 110243.
|
| 37. |
Zuo T, Zhang F, Lui GCY, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology, 2020, 159(3): 944-955.e8.
|
| 38. |
Bradley CP, Teng F, Felix KM, et al. Segmented filamentous bacteria provoke lung autoimmunity by inducing gut-lung axis Th17 cells expressing dual TCRs. Cell Host Microbe, 2017, 22(5): 697-704.e4.
|
| 39. |
李瑞君. 干酪乳桿菌LC2 W細胞組分對巨噬細胞活性及細胞因子分泌的影響[D]. 上海海洋大學. 2010. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD2012&filename=1011304812.nh.
|
| 40. |
中華人民共和國國家衛生健康委辦公廳, 國家中醫藥管理局. 關于印發新型冠狀病毒肺炎診療方案(試行第八版)的通知[EB/OL]. http://www.nhc.gov.cn/yzygj/s7653p/202008/0a7bdf12bd4b46e5bd28ca7 f9a7 f5e5a.shtml.
|
| 41. |
Sohn KH, Baek MG, Choi SM, et al. Alteration of lung and gut microbiota in IL-13-transgenic mice simulating chronic asthma. J Microbiol Biotechnol, 2020, 30(12): 1819-1826.
|
| 42. |
Oddy WH. Breastfeeding, childhood asthma, and allergic disease. Ann Nutr Metab, 2017, 70(Suppl 2): 26-36.
|
| 43. |
Alemao CA, Budden KF, Gomez HM, et al. Impact of diet and the bacterial microbiome on the mucous barrier and immune disorders. Allergy, 2021, 76(3): 714-734.
|
| 44. |
Thorburn AN, McKenzie CI, Shen S, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun, 2015, 6: 7320.
|
| 45. |
Pascal M, Perez-Gordo M, Caballero T, et al. Microbiome and allergic diseases. Front Immunol, 2018, 9: 1584.
|
| 46. |
孔艷華. 基于腸道菌群微生態失衡的理肺湯干預慢性阻塞性肺疾病的機制研究. 北京中醫藥大學. 2016. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFDLAST2016&filename=1016069879.nh.
|
| 47. |
Raftery AL, Tsantikos E, Harris NL, et al. Links between inflammatory bowel disease and chronic obstructive pulmonary disease. Front Immunol, 2020, 11: 2144.
|
| 48. |
Bowerman KL, Rehman SF, Vaughan A, et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat Commun, 2020, 11(1): 5886.
|
| 49. |
Yong W, Zhang L, Chen Y, et al. Jianpi Huatan Tongfu granule alleviates inflammation and improves intestinal flora in patients with acute exacerbation of chronic obstructive pulmonary disease. J Int Med Res, 2020, 48(4): 300060520909235.
|
| 50. |
李乃健, 戴周麗, 陳熾勇, 等. 通過糞菌移植建立慢性阻塞性肺疾病腸道菌群研究模型及其效果評價. 中國呼吸與危重監護雜志, 2021, 20(7): 465-471.
|
| 51. |
DeMarini DM. Genotoxicity of tobacco smoke and tobacco smoke condensate: a review. Mutat Res, 2004, 567(2-3): 447-474.
|
| 52. |
Wang H, Zhao JX, Hu N, et al. Side-stream smoking reduces intestinal inflammation and increases expression of tight junction proteins. World J Gastroenterol, 2012, 18(18): 2180-2187.
|
| 53. |
Shanahan ER, Shah A, Koloski N, et al. Influence of cigarette smoking on the human duodenal mucosa-associated microbiota. Microbiome, 2018, 6(1): 150.
|
| 54. |
Mortaz E, Adcock IM, Ricciardolo FL, et al. Anti-inflammatory effects of Lactobacillus rahmnosus and Bifidobacterium breve on cigarette smoke activated human macrophages. PLoS One, 2015, 10(8): e0136455.
|
| 55. |
?olak Y, Afzal S, Nordestgaard BG, et al. Characteristics and prognosis of never-smokers and smokers with asthma in the Copenhagen general population study. A prospective cohort study. Am J Respir Crit Care Med, 2015, 192(2): 172-181.
|
| 56. |
Greathouse KL, White JR, Vargas AJ, et al. Interaction between the microbiome and TP53 in human lung cancer. Genome Biol, 2018, 19(1): 123.
|
| 57. |
Benjamin JL, Hedin CR, Koutsoumpas A, et al. Smokers with active Crohn's disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. Inflamm Bowel Dis, 2012, 18(6): 1092-1100.
|
| 58. |
Huang C, Shi G. Smoking and microbiome in oral, airway, gut and some systemic diseases. J Transl Med, 2019, 17(1): 225.
|