- 1. Department of Thyroid and Breast Surgery, Bayannur Hospital, Bayannur, Inner Mongolia 015000, P. R. China;
- 2. Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia 015000, P. R. China;
- 3. Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P. R. China;
Citation: YUAN Shuanglong, JIA Lizhou, ZHOU Yi. Research advances in targeted drug therapy and drug resistance mechanisms for breast cancer. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2025, 32(9): 1181-1188. doi: 10.7507/1007-9424.202504123 Copy
Copyright ? the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
1. | 鄔昊, 呂青. 全球及中國乳腺癌的流行病學趨勢及防控啟示: 2018–2022年《全球癌癥統計報告》解讀. 中國普外基礎與臨床雜志, 2024, 31(7): 796-802. |
2. | Maqsood Q, Khan MU, Fatima T, et al. Recent insights into breast cancer: molecular pathways, epigenetic regulation, and emerging targeted therapies. Breast Cancer (Auckl), 2025, 19: 11782234251355663. doi: 10.1177/11782234251355663. |
3. | 張一鳴, 田辛晨, 王宇飛, 等. 基于分子分型的乳腺癌中醫精準辨治思路探討. 北京中醫藥大學學報, 2023, 46(7): 1025-1031. |
4. | 楊曉靜, 徐溢, 沈贊. 抗HER2靶向治療的耐藥機制及治療新策略. 腫瘤, 2023, 43(7): 580-597. |
5. | Khan MM, Yalamarty SSK, Rajmalani BA, et al. Recent strategies to overcome breast cancer resistance. Crit Rev Oncol Hematol, 2024, 197: 104351. doi: 10.1016/j.critrevonc.2024.104351. |
6. | Ryspayeva D, Seyhan AA, MacDonald WJ, et al. Signaling pathway dysregulation in breast cancer. Oncotarget, 2025, 16: 168-201. |
7. | Singla H, Ludhiadch A, Kaur RP, et al. Recent advances in HER2 positive breast cancer epigenetics: susceptibility and therapeutic strategies. Eur J Med Chem, 2017, 142: 316-327. |
8. | 吳悠, 戴建國. HER2陽性乳腺癌靶向治療的研究進展. 中國臨床新醫學, 2024, 17(10): 1183-1186. |
9. | Vega Cano KS, Marmolejo Casta?eda DH, et al. Systemic therapy for HER2-positive metastatic breast cancer: current and future trends. Cancers (Basel), 2022, 15(1): 51. doi: 10.3390/cancers15010051. |
10. | Baselga J, Cortés J, Kim SB, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med, 2012, 366(2): 109-119. |
11. | 艾林, 張清媛. T-DM1治療晚期HER2陽性乳腺癌耐藥機制的研究進展. 現代腫瘤醫學, 2025: 1-7. [2025-08-05]. |
12. | Ma F, Yan M, Li W, et al. Pyrotinib versus placebo in combination with trastuzumab and docetaxel as first line treatment in patients with HER2 positive metastatic breast cancer (PHILA): Randomised, double blind, multicentre, phase 3 trial. BMJ, 2023, 383: e076065. doi: 10.1136/bmj-2023-076065. |
13. | Cheng X, Sun Y, Highkin M, et al. Breast cancer mutations HER2V777L and PIK3CAH1047R activate the p21-CDK4/6-cyclin D1 axis to drive tumorigenesis and drug resistance. Cancer Res, 2023, 83(17): 2839-2857. |
14. | Martin M, Holmes FA, Ejlertsen B, et al. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol, 2017, 18(12): 1688-1700. |
15. | 曹萌, 劉相麟, 劉喆贏, 等. 漢曲優?與帕妥珠單抗聯合化療新輔助治療HER-2陽性乳腺癌療效和安全評價. 中國臨床研究, 2022, 35(3): 319-324. |
16. | Copeland-Halperin RS, Liu JE, Yu AF. Cardiotoxicity of HER2-targeted therapies. Curr Opin Cardiol, 2019, 34(4): 451-458. |
17. | Chai M, Li L, Wu H, et al. Lung toxicity induced by anti-HER2 antibody-drug conjugates for breast cancer. Crit Rev Oncol Hematol, 2024, 195: 104274. doi: 10.1016/j.critrevonc.2024.104274. |
18. | De Sanctis R, Jacobs F, Benvenuti C, et al. From seaside to bedside: current evidence and future perspectives in the treatment of breast cancer using marine compounds. Front Pharmacol, 2022, 13: 909566. doi: 10.3389/fphar.2022.909566. |
19. | 謝寧, 劉斌亮, 歐陽取長. 晚期HR陽性/HER2陽性乳腺癌的治療進展. 腫瘤藥學, 2022, 12(6): 703-708. |
20. | 張智滔, 趙帥. 托瑞米芬聯合他莫昔芬輔助治療晚期乳腺癌的效果及對患者生存質量的影響. 臨床合理用藥雜志, 2022, 15(28): 96-98. |
21. | Olayoku FR, Verhoog NJD, Louw A. Cyclopia extracts act as selective estrogen receptor subtype downregulators in estrogen receptor positive breast cancer cell lines: comparison to standard of care breast cancer endocrine therapies and a selective estrogen receptor agonist and antagonist. Front Pharmacol, 2023, 14: 1122031. doi: 10.3389/fphar.2023.1122031. |
22. | Robertson JF. Fulvestrant (Faslodex) —how to make a good drug better. Oncologist, 2007, 12(7): 774-784. |
23. | Martel S, Bruzzone M, Ceppi M, et al. Risk of adverse events with the addition of targeted agents to endocrine therapy in patients with hormone receptor-positive metastatic breast cancer: a systematic review and meta-analysis. Cancer Treat Rev, 2018, 62: 123-132. |
24. | 陳飛, 程祺, 隋殿晶. CDK4/6抑制劑在乳腺癌治療中的耐藥機制. 中國老年學雜志, 2023, 43(19): 4858-4860. |
25. | 王曉稼, 王薇. HR陽性/HER2陰性乳腺癌CDK4/6抑制劑聯合內分泌治療—《中國臨床腫瘤學會(CSCO)乳腺癌診療指南(2022版)》解讀. 浙江醫學, 2022, 44(24): 2595-2599. |
26. | Morrison L, Loibl S, Turner NC. The CDK4/6 inhibitor revolution—a game-changing era for breast cancer treatment. Nat Rev Clin Oncol, 2024, 21(2): 89-105. |
27. | 李安娜, 夏錚錚, 蔡佳立, 等. CDK4/6抑制劑一線治療HR+/HER2– 晚期乳腺癌的快速衛生技術評估. 藥物流行病學雜志, 2024, 33(9): 1017-1029. |
28. | 王蕾, 楊思原, 張季, 等. CDK4/6抑制劑在HR+ 晚期乳腺癌治療中的耐藥機制及進展后治療策略. 中南藥學, 2024, 22(4): 1030-1036. |
29. | 馮聰, 張寅斌, 吳菲, 等. BRCA1/2突變和同源重組修復缺陷(HRD)檢測在乳腺癌中的臨床研究進展. 現代腫瘤醫學, 2023, 31(10): 1940-1943. |
30. | Li Y, Miao W, Yuan C, et al. PARP inhibitor boost the efficacy of photothermal therapy to TNBC through enhanced DNA damage and inhibited homologous recombination repair. Drug Deliv Transl Res, 202, 15(3): 955-967. |
31. | Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med, 2017, 377(6): 523-533. |
32. | McCrea C, Hettle R, Gulati P, et al. Indirect treatment comparison of olaparib and talazoparib in germline BRCA-mutated HER2-negative metastatic breast cancer. J Comp Eff Res, 2021, 10(13): 1021-1030. |
33. | Shuai Q, Bai X, Li G, et al. Hematopoietic adverse events associated with PARP inhibitors: a FAERS database study. Expert Opin Drug Saf, 2024: 1-11. doi: 10.1080/14740338.2024.2443781. |
34. | Rejili M. Synergistic strategies: ADC-PARP inhibitor combinations in triple-negative breast cancer therapy. Pathol Res Pract, 2025, 272: 156075. doi: 10.1016/j.prp.2025.156075. |
35. | Miller TW, Rexer BN, Garrett JT, et al. Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res, 2011, 13(6): 224. doi: 10.1186/bcr3039. |
36. | Verret B, Cortes J, Bachelot T, et al. Efficacy of PI3K inhibitors in advanced breast cancer. Ann Oncol, 2019, 30 Suppl 10: x12-x20.30-10. doi: 10.1093/annonc/mdz381. |
37. | Dong C, Wu J, Chen Y, et al. Activation of PI3K/AKT/mTOR pathway causes drug resistance in breast cancer. Front Pharmacol, 2021, 12: 628690. doi: 10.3389/fphar.2021.628690. |
38. | Hu Y, Guo R, Wei J, et al. Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells. Cell Death Dis, 2015, 6(12): e2020. doi: 10.1038/cddis.2015.363. |
39. | Alves CL, Ditzel HJ. Drugging the PI3K/AKT/mTOR pathway in ER+ breast cancer. Int J Mol Sci, 2023, 24(5): 4522. doi: 10.3390/ijms24054522. |
40. | Miricescu D, Totan A, Stanescu-Spinu II, et al. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects. Int J Mol Sci, 2020, 22(1): 173. doi: 10.3390/ijms22010173. |
41. | 黃昱. 乳腺癌免疫檢查點抑制劑治療進展. 中國腫瘤臨床與康復, 2023, 30(6): 340-344. |
42. | Li H, Chang Y, Jin T, et al. Progress of PD-1/PD-L1 immune checkpoint inhibitors in the treatment of triple-negative breast cancer. Cancer Cell Int, 2025, 25(1): 139. doi: 10.1186/s12935-025-03769-z. |
43. | Simmons CE, Brezden-Masley C, McCarthy J, et al. Positive progress: current and evolving role of immune checkpoint inhibitors in metastatic triple-negative breast cancer. Ther Adv Med Oncol, 2020, 12: 1758835920909091. doi: 10.1177/1758835920909091. |
44. | Thomas R, Al-Khadairi G, Decock J. Immune checkpoint inhibitors in triple negative breast cancer treatment: promising future prospects. Front Oncol, 2021, 10: 600573. doi: 10.3389/fonc.2020.600573. |
45. | Mu Y, Meng Y, Du Y, et al. Clinical characteristics and treatment outcomes of HER2 mutation and HER2 fusion in 22 patients with advanced breast cancer. Thorac Cancer, 2023, 14(34): 3381-3388. |
46. | Araki K, Miyoshi Y. Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer. Breast Cancer, 2018, 25(4): 392-401. |
47. | 孫亞蒙, 馬曄, 郭潤生. 乳腺癌組織樣本中HER2基因拷貝數的檢測分析. 上海交通大學學報(醫學版), 2022, 42(11): 1589-1597. |
48. | Fan P, Jordan VC. New insights into acquired endocrine resistance of breast cancer. Cancer Drug Resist, 2019, 2(2): 198-209. |
49. | 趙佳寧, 劉月平. 乳腺癌PIK3CA突變的臨床意義及其檢測研究進展. 臨床與實驗病理學雜志, 2024, 40(9): 973-978. |
50. | Rocca A, Braga L, Volpe MC, et al. The predictive and prognostic role of RAS-RAF-MEK-ERK pathway alterations in breast cancer: revision of the literature and comparison with the analysis of cancer genomic datasets. Cancers (Basel), 2022, 14(21): 5306. doi: 10.3390/cancers14215306. |
51. | Javankiani S, Bolandi S, Soleimani A, et al. MAPK signaling mediates tamoxifen resistance in estrogen receptor-positive breast cancer. Mol Cell Biochem, 2025 May 23. doi: 10.1007/s11010-025-05304-0. |
52. | Soleimani Dodaran M, Borgoni S, Sofyal? E, et al. Candidate methylation sites associated with endocrine therapy resistance in ER+/HER2- breast cancer. BMC Cancer, 2020, 20(1): 676. doi: 10.1186/s12885-020-07100-z. |
53. | Zhang C, Xu B, Liu P. Addition of the p110α inhibitor BYL719 overcomes targeted therapy resistance in cells from Her2-positive-PTEN-loss breast cancer. Tumour Biol, 2016, 37(11): 14831-14839. |
54. | Najjary S, Mohammadzadeh R, Mokhtarzadeh A, et al. Role of miR-21 as an authentic oncogene in mediating drug resistance in breast cancer. Gene, 2020, 738: 144453. doi: 10.1016/j.gene.2020.144453. |
55. | Singh D, Assaraf YG, Gacche RN. Long non-coding RNA mediated drug resistance in breast cancer. Drug Resist Updat, 2022, 63: 100851. doi: 10.1016/j.drup.2022.100851. |
56. | Kang Y. Landscape of ncRNAs involved in drug resistance of breast cancer. Clin Transl Oncol, 2023, 25(7): 1869-1892. |
57. | Modi A, Roy D, Sharma S, et al. ABC transporters in breast cancer: their roles in multidrug resistance and beyond. J Drug Target, 2022, 30(9): 927-947. |
58. | Dilmac S, Ozpolat B. Mechanisms of PARP-inhibitor-resistance in BRCA-mutated breast cancer and new therapeutic approaches. Cancers (Basel), 2023, 15(14): 3642. doi: 10.3390/cancers15143642. |
59. | Gote V, Nookala AR, Bolla PK, et al. Drug resistance in metastatic breast cancer: tumor targeted nanomedicine to the rescue. Int J Mol Sci, 2021, 22(9): 4673. doi: 10.3390/ijms22094673. |
60. | Zhao F, Zhang H. Feasibility study of pyrrolitinib-based dual-target therapy for neoadjuvant treatment of HER2-positive breast cancer patients. Breast Cancer (Dove Med Press), 2024, 16: 845-853. |
61. | 王玉鳳, 黨會芬, 羅旭, 等. CDK4/6抑制劑聯合內分泌、靶向一線治療HR+/HER2+ 晚期乳腺癌療效分析. 甘肅醫藥, 2024, 43(1): 87-90. |
62. | 吳萬垠. 腫瘤靶向免疫治療時代難點問題及中醫藥切入點. 中國中西醫結合雜志, 2024, 44(8): 901-905. |
63. | Venetis K, Cursano G, Pescia C, et al. Liquid biopsy: cell-free DNA based analysis in breast cancer. J Liq Biopsy, 2023, 1: 100002. doi: 10.1016/j.jlb.2023.100002. |
64. | Zhang X, Ju S, Wang X, et al. Advances in liquid biopsy using circulating tumor cells and circulating cell-free tumor DNA for detection and monitoring of breast cancer. Clin Exp Med, 2019, 19(3): 271-279. |
65. | Mukhtarova G, Angin M, Caner A, et al. Effects of 5-azacytidine and N6-methyladenosine combination on apoptosis and stemness in human breast cancer stem cells. Mol Biol Rep, 2025, 52(1): 292. doi: 10.1007/s11033-025-10398-2. |
66. | Sargazi Z, Yazdani Y, Tahavvori A, et al. NFR2/ABC transporter axis in drug resistance of breast cancer cells. Mol Biol Rep, 2023, 50(6): 5407-5414. |
67. | Lin NU, Pegram M, Sahebjam S, et al. Pertuzumab plus high-dose trastuzumab in patients with progressive brain metastases and HER2-positive metastatic breast cancer: primary analysis of a phase Ⅱ study. J Clin Oncol, 2021, 39(24): 2667-2675. |
68. | Jerusalem G, Farah S, Courtois A, et al. Continuous versus intermittent extended adjuvant letrozole for breast cancer: final results of randomized phase Ⅲ SOLE (Study of letrozole extension) and SOLE estrogen substudy. Ann Oncol, 2021, 32(10): 1256-1266. |
69. | Wolf DM, Yau C, Wulfkuhle J, et al. Redefining breast cancer subtypes to guide treatment prioritization and maximize response: predictive biomarkers across 10 cancer therapies. Cancer Cell, 2022, 40(6): 609-623. |
70. | Hany D, Vafeiadou V, Picard D. CRISPR-Cas9 screen reveals a role of purine synthesis for estrogen receptor α activity and tamoxifen resistance of breast cancer cells. Sci Adv, 2023, 9(19): eadd3685. doi: 10.1126/sciadv.add3685. |
71. | Ahmed M, Daoud GH, Mohamed A, et al. New insights into the therapeutic applications of CRISPR/Cas9 genome editing in breast cancer. Genes (Basel), 2021, 12(5): 723. doi: 10.3390/genes12050723. |
72. | Wang Y, Minden A. Current molecular combination therapies used for the treatment of breast cancer. Int J Mol Sci, 2022, 23(19): 11046. doi: 10.3390/ijms231911046. |
73. | Pritchard KI, Chia SK, Simmons C, et al. Enhancing endocrine therapy combination strategies for the treatment of postmenopausal HR+/HER2- advanced breast cancer. Oncologist, 2017, 22(1): 12-24. |
74. | Bhattacharya S, Saleem SM, Singh A, et al. Empowering precision medicine: regenerative AI in breast cancer. Front Oncol, 2024, 14: 1465720. doi: 10.3389/fonc.2024.1465720. |
75. | Wang W, Zhang R, Wang X, et al. Suppression of KIF3A inhibits triple negative breast cancer growth and metastasis by repressing Rb-E2F signaling and epithelial-mesenchymal transition. Cancer Sci, 2020, 111(4): 1422-1434. |
76. | Zhang P, Li C, Li F, et al. Novel multi-omics analysis revealing metabolic heterogeneity of breast cancer cell and subsequent development of associated prognostic signature. Transl Oncol, 2025, 59: 102444. doi: 10.1016/j.tranon.2025.102444. |
77. | Wang Q, Yang N, Yan H, et al. Novel folate-phenylfuran P-gp inhibitor conjugates for overcoming multidrug resistance in MCF-7/ADR cell. ChemMedChem, 2025, 20(13): e202500216. doi: 10.1002/cmdc.202500216. |
- 1. 鄔昊, 呂青. 全球及中國乳腺癌的流行病學趨勢及防控啟示: 2018–2022年《全球癌癥統計報告》解讀. 中國普外基礎與臨床雜志, 2024, 31(7): 796-802.
- 2. Maqsood Q, Khan MU, Fatima T, et al. Recent insights into breast cancer: molecular pathways, epigenetic regulation, and emerging targeted therapies. Breast Cancer (Auckl), 2025, 19: 11782234251355663. doi: 10.1177/11782234251355663.
- 3. 張一鳴, 田辛晨, 王宇飛, 等. 基于分子分型的乳腺癌中醫精準辨治思路探討. 北京中醫藥大學學報, 2023, 46(7): 1025-1031.
- 4. 楊曉靜, 徐溢, 沈贊. 抗HER2靶向治療的耐藥機制及治療新策略. 腫瘤, 2023, 43(7): 580-597.
- 5. Khan MM, Yalamarty SSK, Rajmalani BA, et al. Recent strategies to overcome breast cancer resistance. Crit Rev Oncol Hematol, 2024, 197: 104351. doi: 10.1016/j.critrevonc.2024.104351.
- 6. Ryspayeva D, Seyhan AA, MacDonald WJ, et al. Signaling pathway dysregulation in breast cancer. Oncotarget, 2025, 16: 168-201.
- 7. Singla H, Ludhiadch A, Kaur RP, et al. Recent advances in HER2 positive breast cancer epigenetics: susceptibility and therapeutic strategies. Eur J Med Chem, 2017, 142: 316-327.
- 8. 吳悠, 戴建國. HER2陽性乳腺癌靶向治療的研究進展. 中國臨床新醫學, 2024, 17(10): 1183-1186.
- 9. Vega Cano KS, Marmolejo Casta?eda DH, et al. Systemic therapy for HER2-positive metastatic breast cancer: current and future trends. Cancers (Basel), 2022, 15(1): 51. doi: 10.3390/cancers15010051.
- 10. Baselga J, Cortés J, Kim SB, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med, 2012, 366(2): 109-119.
- 11. 艾林, 張清媛. T-DM1治療晚期HER2陽性乳腺癌耐藥機制的研究進展. 現代腫瘤醫學, 2025: 1-7. [2025-08-05].
- 12. Ma F, Yan M, Li W, et al. Pyrotinib versus placebo in combination with trastuzumab and docetaxel as first line treatment in patients with HER2 positive metastatic breast cancer (PHILA): Randomised, double blind, multicentre, phase 3 trial. BMJ, 2023, 383: e076065. doi: 10.1136/bmj-2023-076065.
- 13. Cheng X, Sun Y, Highkin M, et al. Breast cancer mutations HER2V777L and PIK3CAH1047R activate the p21-CDK4/6-cyclin D1 axis to drive tumorigenesis and drug resistance. Cancer Res, 2023, 83(17): 2839-2857.
- 14. Martin M, Holmes FA, Ejlertsen B, et al. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol, 2017, 18(12): 1688-1700.
- 15. 曹萌, 劉相麟, 劉喆贏, 等. 漢曲優?與帕妥珠單抗聯合化療新輔助治療HER-2陽性乳腺癌療效和安全評價. 中國臨床研究, 2022, 35(3): 319-324.
- 16. Copeland-Halperin RS, Liu JE, Yu AF. Cardiotoxicity of HER2-targeted therapies. Curr Opin Cardiol, 2019, 34(4): 451-458.
- 17. Chai M, Li L, Wu H, et al. Lung toxicity induced by anti-HER2 antibody-drug conjugates for breast cancer. Crit Rev Oncol Hematol, 2024, 195: 104274. doi: 10.1016/j.critrevonc.2024.104274.
- 18. De Sanctis R, Jacobs F, Benvenuti C, et al. From seaside to bedside: current evidence and future perspectives in the treatment of breast cancer using marine compounds. Front Pharmacol, 2022, 13: 909566. doi: 10.3389/fphar.2022.909566.
- 19. 謝寧, 劉斌亮, 歐陽取長. 晚期HR陽性/HER2陽性乳腺癌的治療進展. 腫瘤藥學, 2022, 12(6): 703-708.
- 20. 張智滔, 趙帥. 托瑞米芬聯合他莫昔芬輔助治療晚期乳腺癌的效果及對患者生存質量的影響. 臨床合理用藥雜志, 2022, 15(28): 96-98.
- 21. Olayoku FR, Verhoog NJD, Louw A. Cyclopia extracts act as selective estrogen receptor subtype downregulators in estrogen receptor positive breast cancer cell lines: comparison to standard of care breast cancer endocrine therapies and a selective estrogen receptor agonist and antagonist. Front Pharmacol, 2023, 14: 1122031. doi: 10.3389/fphar.2023.1122031.
- 22. Robertson JF. Fulvestrant (Faslodex) —how to make a good drug better. Oncologist, 2007, 12(7): 774-784.
- 23. Martel S, Bruzzone M, Ceppi M, et al. Risk of adverse events with the addition of targeted agents to endocrine therapy in patients with hormone receptor-positive metastatic breast cancer: a systematic review and meta-analysis. Cancer Treat Rev, 2018, 62: 123-132.
- 24. 陳飛, 程祺, 隋殿晶. CDK4/6抑制劑在乳腺癌治療中的耐藥機制. 中國老年學雜志, 2023, 43(19): 4858-4860.
- 25. 王曉稼, 王薇. HR陽性/HER2陰性乳腺癌CDK4/6抑制劑聯合內分泌治療—《中國臨床腫瘤學會(CSCO)乳腺癌診療指南(2022版)》解讀. 浙江醫學, 2022, 44(24): 2595-2599.
- 26. Morrison L, Loibl S, Turner NC. The CDK4/6 inhibitor revolution—a game-changing era for breast cancer treatment. Nat Rev Clin Oncol, 2024, 21(2): 89-105.
- 27. 李安娜, 夏錚錚, 蔡佳立, 等. CDK4/6抑制劑一線治療HR+/HER2– 晚期乳腺癌的快速衛生技術評估. 藥物流行病學雜志, 2024, 33(9): 1017-1029.
- 28. 王蕾, 楊思原, 張季, 等. CDK4/6抑制劑在HR+ 晚期乳腺癌治療中的耐藥機制及進展后治療策略. 中南藥學, 2024, 22(4): 1030-1036.
- 29. 馮聰, 張寅斌, 吳菲, 等. BRCA1/2突變和同源重組修復缺陷(HRD)檢測在乳腺癌中的臨床研究進展. 現代腫瘤醫學, 2023, 31(10): 1940-1943.
- 30. Li Y, Miao W, Yuan C, et al. PARP inhibitor boost the efficacy of photothermal therapy to TNBC through enhanced DNA damage and inhibited homologous recombination repair. Drug Deliv Transl Res, 202, 15(3): 955-967.
- 31. Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med, 2017, 377(6): 523-533.
- 32. McCrea C, Hettle R, Gulati P, et al. Indirect treatment comparison of olaparib and talazoparib in germline BRCA-mutated HER2-negative metastatic breast cancer. J Comp Eff Res, 2021, 10(13): 1021-1030.
- 33. Shuai Q, Bai X, Li G, et al. Hematopoietic adverse events associated with PARP inhibitors: a FAERS database study. Expert Opin Drug Saf, 2024: 1-11. doi: 10.1080/14740338.2024.2443781.
- 34. Rejili M. Synergistic strategies: ADC-PARP inhibitor combinations in triple-negative breast cancer therapy. Pathol Res Pract, 2025, 272: 156075. doi: 10.1016/j.prp.2025.156075.
- 35. Miller TW, Rexer BN, Garrett JT, et al. Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res, 2011, 13(6): 224. doi: 10.1186/bcr3039.
- 36. Verret B, Cortes J, Bachelot T, et al. Efficacy of PI3K inhibitors in advanced breast cancer. Ann Oncol, 2019, 30 Suppl 10: x12-x20.30-10. doi: 10.1093/annonc/mdz381.
- 37. Dong C, Wu J, Chen Y, et al. Activation of PI3K/AKT/mTOR pathway causes drug resistance in breast cancer. Front Pharmacol, 2021, 12: 628690. doi: 10.3389/fphar.2021.628690.
- 38. Hu Y, Guo R, Wei J, et al. Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells. Cell Death Dis, 2015, 6(12): e2020. doi: 10.1038/cddis.2015.363.
- 39. Alves CL, Ditzel HJ. Drugging the PI3K/AKT/mTOR pathway in ER+ breast cancer. Int J Mol Sci, 2023, 24(5): 4522. doi: 10.3390/ijms24054522.
- 40. Miricescu D, Totan A, Stanescu-Spinu II, et al. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects. Int J Mol Sci, 2020, 22(1): 173. doi: 10.3390/ijms22010173.
- 41. 黃昱. 乳腺癌免疫檢查點抑制劑治療進展. 中國腫瘤臨床與康復, 2023, 30(6): 340-344.
- 42. Li H, Chang Y, Jin T, et al. Progress of PD-1/PD-L1 immune checkpoint inhibitors in the treatment of triple-negative breast cancer. Cancer Cell Int, 2025, 25(1): 139. doi: 10.1186/s12935-025-03769-z.
- 43. Simmons CE, Brezden-Masley C, McCarthy J, et al. Positive progress: current and evolving role of immune checkpoint inhibitors in metastatic triple-negative breast cancer. Ther Adv Med Oncol, 2020, 12: 1758835920909091. doi: 10.1177/1758835920909091.
- 44. Thomas R, Al-Khadairi G, Decock J. Immune checkpoint inhibitors in triple negative breast cancer treatment: promising future prospects. Front Oncol, 2021, 10: 600573. doi: 10.3389/fonc.2020.600573.
- 45. Mu Y, Meng Y, Du Y, et al. Clinical characteristics and treatment outcomes of HER2 mutation and HER2 fusion in 22 patients with advanced breast cancer. Thorac Cancer, 2023, 14(34): 3381-3388.
- 46. Araki K, Miyoshi Y. Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer. Breast Cancer, 2018, 25(4): 392-401.
- 47. 孫亞蒙, 馬曄, 郭潤生. 乳腺癌組織樣本中HER2基因拷貝數的檢測分析. 上海交通大學學報(醫學版), 2022, 42(11): 1589-1597.
- 48. Fan P, Jordan VC. New insights into acquired endocrine resistance of breast cancer. Cancer Drug Resist, 2019, 2(2): 198-209.
- 49. 趙佳寧, 劉月平. 乳腺癌PIK3CA突變的臨床意義及其檢測研究進展. 臨床與實驗病理學雜志, 2024, 40(9): 973-978.
- 50. Rocca A, Braga L, Volpe MC, et al. The predictive and prognostic role of RAS-RAF-MEK-ERK pathway alterations in breast cancer: revision of the literature and comparison with the analysis of cancer genomic datasets. Cancers (Basel), 2022, 14(21): 5306. doi: 10.3390/cancers14215306.
- 51. Javankiani S, Bolandi S, Soleimani A, et al. MAPK signaling mediates tamoxifen resistance in estrogen receptor-positive breast cancer. Mol Cell Biochem, 2025 May 23. doi: 10.1007/s11010-025-05304-0.
- 52. Soleimani Dodaran M, Borgoni S, Sofyal? E, et al. Candidate methylation sites associated with endocrine therapy resistance in ER+/HER2- breast cancer. BMC Cancer, 2020, 20(1): 676. doi: 10.1186/s12885-020-07100-z.
- 53. Zhang C, Xu B, Liu P. Addition of the p110α inhibitor BYL719 overcomes targeted therapy resistance in cells from Her2-positive-PTEN-loss breast cancer. Tumour Biol, 2016, 37(11): 14831-14839.
- 54. Najjary S, Mohammadzadeh R, Mokhtarzadeh A, et al. Role of miR-21 as an authentic oncogene in mediating drug resistance in breast cancer. Gene, 2020, 738: 144453. doi: 10.1016/j.gene.2020.144453.
- 55. Singh D, Assaraf YG, Gacche RN. Long non-coding RNA mediated drug resistance in breast cancer. Drug Resist Updat, 2022, 63: 100851. doi: 10.1016/j.drup.2022.100851.
- 56. Kang Y. Landscape of ncRNAs involved in drug resistance of breast cancer. Clin Transl Oncol, 2023, 25(7): 1869-1892.
- 57. Modi A, Roy D, Sharma S, et al. ABC transporters in breast cancer: their roles in multidrug resistance and beyond. J Drug Target, 2022, 30(9): 927-947.
- 58. Dilmac S, Ozpolat B. Mechanisms of PARP-inhibitor-resistance in BRCA-mutated breast cancer and new therapeutic approaches. Cancers (Basel), 2023, 15(14): 3642. doi: 10.3390/cancers15143642.
- 59. Gote V, Nookala AR, Bolla PK, et al. Drug resistance in metastatic breast cancer: tumor targeted nanomedicine to the rescue. Int J Mol Sci, 2021, 22(9): 4673. doi: 10.3390/ijms22094673.
- 60. Zhao F, Zhang H. Feasibility study of pyrrolitinib-based dual-target therapy for neoadjuvant treatment of HER2-positive breast cancer patients. Breast Cancer (Dove Med Press), 2024, 16: 845-853.
- 61. 王玉鳳, 黨會芬, 羅旭, 等. CDK4/6抑制劑聯合內分泌、靶向一線治療HR+/HER2+ 晚期乳腺癌療效分析. 甘肅醫藥, 2024, 43(1): 87-90.
- 62. 吳萬垠. 腫瘤靶向免疫治療時代難點問題及中醫藥切入點. 中國中西醫結合雜志, 2024, 44(8): 901-905.
- 63. Venetis K, Cursano G, Pescia C, et al. Liquid biopsy: cell-free DNA based analysis in breast cancer. J Liq Biopsy, 2023, 1: 100002. doi: 10.1016/j.jlb.2023.100002.
- 64. Zhang X, Ju S, Wang X, et al. Advances in liquid biopsy using circulating tumor cells and circulating cell-free tumor DNA for detection and monitoring of breast cancer. Clin Exp Med, 2019, 19(3): 271-279.
- 65. Mukhtarova G, Angin M, Caner A, et al. Effects of 5-azacytidine and N6-methyladenosine combination on apoptosis and stemness in human breast cancer stem cells. Mol Biol Rep, 2025, 52(1): 292. doi: 10.1007/s11033-025-10398-2.
- 66. Sargazi Z, Yazdani Y, Tahavvori A, et al. NFR2/ABC transporter axis in drug resistance of breast cancer cells. Mol Biol Rep, 2023, 50(6): 5407-5414.
- 67. Lin NU, Pegram M, Sahebjam S, et al. Pertuzumab plus high-dose trastuzumab in patients with progressive brain metastases and HER2-positive metastatic breast cancer: primary analysis of a phase Ⅱ study. J Clin Oncol, 2021, 39(24): 2667-2675.
- 68. Jerusalem G, Farah S, Courtois A, et al. Continuous versus intermittent extended adjuvant letrozole for breast cancer: final results of randomized phase Ⅲ SOLE (Study of letrozole extension) and SOLE estrogen substudy. Ann Oncol, 2021, 32(10): 1256-1266.
- 69. Wolf DM, Yau C, Wulfkuhle J, et al. Redefining breast cancer subtypes to guide treatment prioritization and maximize response: predictive biomarkers across 10 cancer therapies. Cancer Cell, 2022, 40(6): 609-623.
- 70. Hany D, Vafeiadou V, Picard D. CRISPR-Cas9 screen reveals a role of purine synthesis for estrogen receptor α activity and tamoxifen resistance of breast cancer cells. Sci Adv, 2023, 9(19): eadd3685. doi: 10.1126/sciadv.add3685.
- 71. Ahmed M, Daoud GH, Mohamed A, et al. New insights into the therapeutic applications of CRISPR/Cas9 genome editing in breast cancer. Genes (Basel), 2021, 12(5): 723. doi: 10.3390/genes12050723.
- 72. Wang Y, Minden A. Current molecular combination therapies used for the treatment of breast cancer. Int J Mol Sci, 2022, 23(19): 11046. doi: 10.3390/ijms231911046.
- 73. Pritchard KI, Chia SK, Simmons C, et al. Enhancing endocrine therapy combination strategies for the treatment of postmenopausal HR+/HER2- advanced breast cancer. Oncologist, 2017, 22(1): 12-24.
- 74. Bhattacharya S, Saleem SM, Singh A, et al. Empowering precision medicine: regenerative AI in breast cancer. Front Oncol, 2024, 14: 1465720. doi: 10.3389/fonc.2024.1465720.
- 75. Wang W, Zhang R, Wang X, et al. Suppression of KIF3A inhibits triple negative breast cancer growth and metastasis by repressing Rb-E2F signaling and epithelial-mesenchymal transition. Cancer Sci, 2020, 111(4): 1422-1434.
- 76. Zhang P, Li C, Li F, et al. Novel multi-omics analysis revealing metabolic heterogeneity of breast cancer cell and subsequent development of associated prognostic signature. Transl Oncol, 2025, 59: 102444. doi: 10.1016/j.tranon.2025.102444.
- 77. Wang Q, Yang N, Yan H, et al. Novel folate-phenylfuran P-gp inhibitor conjugates for overcoming multidrug resistance in MCF-7/ADR cell. ChemMedChem, 2025, 20(13): e202500216. doi: 10.1002/cmdc.202500216.