1. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
Lei S, Zheng R, Zhang S, et al. Breast cancer incidence and mortality in women in China: temporal trends and projections to 2030. Cancer Biol Med, 2021, 18(3): 900-909.
|
3. |
Wang H, Mao X. Evaluation of the efficacy of neoadjuvant chemotherapy for breast cancer. Drug Des Devel Ther, 2020, 14: 2423-2433.
|
4. |
Spring LM, Fell G, Arfe A, et al. Pathologic complete response after neoadjuvant chemotherapy and impact on breast cancer recurrence and survival: a comprehensive meta-analysis. Clin Cancer Res, 2020, 26(12): 2838-2848.
|
5. |
Yao FF, Zhang Y. A review of quantitative diffusion-weighted MR imaging for breast cancer: Towards noninvasive biomarker. Clin Imaging, 2023, 98: 36-58.
|
6. |
張靖, 宋君, 徐衛云, 等. MRI檢查預測乳腺癌新輔助化療后病理完全緩解的準確性分析. 中國普外基礎與臨床雜志, 2020, 27(8): 975-979.
|
7. |
張玉, 袁權, 湯增輝, 等. ADC值聯合18F-FDG PET/CT最大標準攝取值對乳腺癌新輔助化療療效的預測價值. 放射學實踐, 2022, 37(5): 550-555.
|
8. |
毛婷, 楊洋, 郝翠, 等. 采用18F-FDG PET/CT預測乳腺癌新輔助化療治療療效的可行性研究. 中國CT和MRI雜志, 2022, 20(10): 64-65.
|
9. |
Bhargava R, Beriwal S, McManus K, et al. Insulin-like growth factor receptor-1 (IGF-1R) expression in normal breast, proliferative breast lesions, and breast carcinoma. Appl Immunohistochem Mol Morphol, 2011, 19(3): 218-225.
|
10. |
Zapater-Moros A, Díaz-Beltrán L, Gámez-Pozo A, et al. Metabolomics unravels subtype-specific characteristics related to neoadjuvant therapy response in breast cancer patients. Metabolomics. 2023, 19(7): 60. doi: 10.1007/s11306-023-02024-8.
|
11. |
Hu G, Ding Q, Zhong K, et al. Low pretreatment prognostic nutritional index predicts poor survival in breast cancer patients: A meta-analysis. PLoS One, 2023, 18(1): 0280669. doi: 10.1371/journal.pone.0280669.
|
12. |
Xiang M, Zhang H, Tian J, et al. Low serum albumin levels and high neutrophil counts are predictive of a poorer prognosis in patients with metastatic breast cancer. Oncol Lett, 2022, 24(6): 432. doi: 10.3892/ol.2022.13552.
|
13. |
Bonet C, Crous-Bou M, Tsilidis KK, et al. The association between body fatness and mortality among breast cancer survivors: results from a prospective cohort study. Eur J Epidemiol, 2023, 38(5): 545-557.
|
14. |
Trestini I, Caldart A, Cintoni M, et al. Predictive and prognostic effect of computed tomography-derived body composition analysis during neoadjuvant chemotherapy for operable and locally advanced breast cancer. Nutrition, 2023, 105: 111858. doi: 10.1016/j.nut.2022.111858.
|
15. |
Massa C, Karn T, Denkert C, et al. Differential effect on different immune subsets of neoadjuvant chemotherapy in patients with TNBC. Immunother Cancer, 2020, 8(2): e001261. doi:10.1136/ jitc- 2020-001261.
|
16. |
Yang G, Liu P, Zheng L, et al. Novel peripheral blood parameters as predictors of neoadjuvant chemotherapy response in breast cancer. Front Surg, 2022, 9: 1004687. doi: 10.3389/fsurg.2022.1004687.
|
17. |
Kusama H, Kittaka N, Soma A, et al. Predictive factors for response to neoadjuvant chemotherapy: inflammatory and immune markers in triple-negative breast cancer. Breast Cancer, 2023, 30(6): 1085-1093.
|
18. |
高曉麗, 吳斌. 系統性炎癥指標與局部晚期乳腺癌新輔助化療后病理完全緩解的關系. 中國普外基礎與臨床雜志, 2023, 30(4): 443-449.
|
19. |
Gu Q, Zhao J, Liu Y, et al. Association between the systemic immune-inflammation index and the efficacy of neoadjuvant chemotherapy, prognosis in HER2 positive breast cancer—a retrospective cohort study. Gland Surg, 2023, 12(5): 609-618.
|
20. |
中國臨床腫瘤學會指南工作委員會. 中國臨床腫瘤學會(CSCO)乳腺癌診療指南2022 . 第1版. 北京, 人民衛生出版社, 2022: 19-20.
|
21. |
Gradishar WJ, Moran MS, Abraham J, et al. Breast Cancer, Version 3. 2022, NCCN Clinical Practice Guidelines in Oncology. Natl Compr Canc Netw, 2022, 20(6): 691-722.
|
22. |
中國肥胖問題工作組數據匯總分析協作組. 我國成人體重指數和腰圍對相關疾病危險因素異常的預測價值: 適宜體重指數和腰圍切點的研究. 中華流行病學雜志, 2002, 23(1): 5-10.
|
23. |
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 1988, 44(3): 837-845.
|
24. |
饒玲艷, 黃凱明, 任蓓蓓, 等. 全身炎癥反應指數對乳腺癌新輔助化療患者病理完全緩解的預測作用. 浙江醫學, 2023, 45(10): 1079-1083.
|
25. |
Li S, Zhang Y, Zhang P, et al. Predictive and prognostic values of tumor infiltrating lymphocytes in breast cancers treated with neoadjuvant chemotherapy: A meta-analysis. Breast. 2022, 66: 97-109.
|
26. |
van den Ende NS, Nguyen AH, Jager A, et al. Triple-negative breast cancer and predictive markers of response to neoadjuvant chemotherapy: a systematic review. Int J Mol Sci, 2023, 24(3): 2969. doi: 10.3390/ijms24032969.
|
27. |
孫苗苗, 蔣燕妮, 宋國新, 等. 乳腺癌新輔助化療前后免疫標志物表達變化及預后. 中華病理學雜志, 2021, 50(5): 482-487.
|
28. |
劉嘉偉. 乳腺癌新輔助治療前后生物標志物表達與療效和預后的相關性研究. 南方醫科大學, 2023. doi:10.27003/d.cnki.gojyu.2023.000443.
|
29. |
鞠仙莉, 袁修學, 閻紅琳, 等. 乳腺癌新輔助化療療效預測指標的研究進展. 中國組織化學與細胞化學雜志, 2023, 32(3): 323-327.
|
30. |
Dan J, Tan J, Huang J, et al. Early changes of platelet-lymphocyte ratio correlate with neoadjuvant chemotherapy response and predict pathological complete response in breast cancer. Mol Clin Oncol, 2023, 19(5): 90. doi: 10.3892/mco.2023.2686.
|
31. |
林佳雯, 李淑琴, 衛姣飛. 腫瘤相關中性粒細胞和中性粒細胞與淋巴細胞比值對乳腺癌新輔助化療療效及預后的評估價值. 解放軍醫學雜志, 1-14 [2024-04-01]. http://kns.cnki.net/ kcms/detail/.1056.R.20230908.1205.004. html.
|
32. |
李才茂. 外周血淋巴細胞和單核細胞比值對三陰性乳腺癌新輔助化療療效的預測價值. 現代腫瘤醫學, 2022, 30(5): 810-814.
|
33. |
王軒可, 程紹強. 系統免疫炎癥指數對激素受體陰性乳腺癌新輔助化療后病理完全緩解的預測價值. 現代腫瘤醫學, 2022, 30(20): 3693-3697.
|
34. |
張思琪. 全身炎癥反應指數預測乳腺癌新輔助化療后病理緩解程度研究. 承德醫學院, 2023, 45(10): 1079-1083.
|
35. |
周敏, 郝宇, 付萍, 等. 中國女性成年期體質量指數及增重量與肥胖相關乳腺癌風險標志物的關聯研究. 四川大學學報(醫學版), 2023, 54(5): 978-984.
|
36. |
王心, 胡偉國, 宋啟斌. 肥胖與乳腺癌發病相關性的研究進展. 腫瘤學雜志, 2021, 27(12): 986-990.
|
37. |
楊海梅, 劉相良, 楊曉強, 等. 肥胖對乳腺癌發生發展、治療和預后影響的研究進展. 山東醫藥, 2020, 60(15): 103-106.
|
38. |
王艷莉, 方玉, 辛曉偉. 202例乳腺癌患者營養狀況調查. 中國腫瘤臨床與康復, 2014, 21(12): 1516-1518.
|
39. |
Liao CK, Yu YL, Lin YC, et al. Prognostic value of the C-reactive protein to albumin ratio in colorectal cancer: an updated systematic review and meta-analysis. World J Surg Oncol, 2021, 19(1): 139. doi: 10.1186/s12957-021-02253-y.
|
40. |
McMillan DC, Watson WS, O’Gorman P, et al. Albumin concentrations are primarily determined by the body cell mass and the systemic inflammatory response in cancer patients with weight loss. Nutr Cancer, 2001, 39(2): 210-213.
|
41. |
Cengiz O, Kocer B, Sürmeli S, et al. Are pretreatment serum albumin and cholesterol levels prognostic tools in patients with colorectal carcinoma? Med Sci Monit, 2006, 12(6): CR240-CR247.
|
42. |
Laursen I, Briand P, Lykkesfeldt AE. Serum albumin as a modulator on growth of the human breast cancer cell line, MCF-7. Anticancer Res, 1990, 10(2A): 343-351.
|
43. |
Sonnenschein C, Soto AM, Michaelson CL. Human serum albumin shares the properties of estrocolyone-I, the inhibitor of the proliferation of estrogen-target cells. Steroid Biochem Mol Biol, 1996, 59(2): 147-154.
|
44. |
Izuegbuna OO, Olawumi HO, Olatoke SA, et al. An evaluation of inflammatory and nutritional status of breast cancer outpatients in a tertiary hospital in Nigeria. Nutr Cancer, 2022, 74(1): 90-99.
|
45. |
Ugel S, Canè S, De Sanctis F, et al. Monocytes in the tumor microenvironment. Annu Rev Pathol, 2021, 16: 93-122.
|
46. |
袁茂林, 韓瓊, 吳斌. 外周血淋巴細胞和單核細胞比值與乳腺癌新輔助化療療效關聯性. 中華腫瘤防治雜志, 2020, 27(4): 283-287.
|
47. |
Chittezhath M, Dhillon MK, Lim JY, et al. Molecular profiling reveals a tumor-promoting phenotype of monocytes and macrophages in human cancer progression. Immunity, 2014, 41(5): 815-829.
|
48. |
張嘉雯, 龔予希, 白茹夢, 等. 三陰型乳腺癌中腫瘤相關巨噬細胞的臨床作用及價值. 臨床與實驗病理學雜志, 2023, 39(3): 336-338.
|
49. |
Zhang M, Zhang H, Tang F, et al. Doxorubicin resistance mediated by cytoplasmic macrophage colony-stimulating factor is associated with switch from apoptosis to autophagic cell death in MCF-7 breast cancer cells. Exp Biol Med (Maywood), 2016, 241(18): 2086-2093.
|
50. |
Ajabnoor GM, Crook T, Coley HM. Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells. Cell Death Dis, 2012, 3(1): e260. doi: 10.1038/cddis.2011.139.
|