1. |
Konyn P, Ahmed A, Kim D. Current epidemiology in hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol, 2021, 15(11): 1295-1307.
|
2. |
全國多中心前瞻性肝癌極早期預警篩查項目(PreCar)專家組. 中國肝癌早篩策略專家共識. 肝臟, 2021, 26(8): 825-831.
|
3. |
何佳, 肖斌, 孫朝暉. 血清微小RNA在肝癌診斷的應用進展. 中華檢驗醫學雜志, 2017, 40(1): 72-76.
|
4. |
Ruiz-Manriquez LM, Carrasco-Morales O, Sanchez Z EA, et al. MicroRNA-mediated regulation of key signaling pathways in hepatocellular carcinoma: A mechanistic insight. Front Genet, 2022 Sep 2: 13: 910733. doi: 10.3389/fgene.2022.910733.
|
5. |
Wen Y, Han J, Chen J, et al. Plasma miRNAs as early biomarkers for detecting hepatocellular carcinoma. Int J Cancer, 2015, 137(7): 1679-1690.
|
6. |
Bronte F, Bronte G, Fanale D, et al. HepatomiRNoma: The proposal of a new network of targets for diagnosis, prognosis and therapy in hepatocellular carcinoma. Crit Rev Oncol Hematol, 2016, 97: 312-321.
|
7. |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5): 1060-1072.
|
8. |
Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer, 2022, 22(7): 381-396.
|
9. |
Zhou Y, Liu F, Ma C, et al. Involvement of microRNAs and their potential diagnostic, therapeutic, and prognostic role in hepatocellular carcinoma. J Clin Lab Anal, 2022, 36(10): e24673.
|
10. |
Huang PS, Liao CJ, Huang YH, et al. Functional and clinical significance of dysregulated microRNAs in liver cancer. Cancers (Basel), 2021, 13(21): 5361.
|
11. |
Hu X, Zhu H, Shen Y, et al. The role of non-coding RNAs in the sorafenib resistance of hepatocellular carcinoma. Front Oncol, 2021, 11: 696705.
|
12. |
Khashkhashi Moghadam S, Bakhshinejad B, Khalafizadeh A, et al. Non-coding RNA-associated competitive endogenous RNA regulatory networks: Novel diagnostic and therapeutic opportunities for hepatocellular carcinoma. J Cell Mol Med, 2022, 26(2): 287-305.
|
13. |
劉凱敏, 陳剛, 高紅強, 等. 不同細胞來源外泌體在肝星狀細胞中作用的研究進展. 中國普外基礎與臨床雜志, 2021, 28(1): 120-124.
|
14. |
薛源, 李沛東, 張廣軍. 結直腸癌患者血清外泌體microRNAs的研究進展. 中國普外基礎與臨床雜志, 2020, 27(9): 1169-1174.
|
15. |
Sun Q, Zhang X, Tan Z, et al. Bone marrow mesenchymal stem cells-secreted exosomal microRNA-205-5p exerts inhibitory effect on the progression of liver cancer through regulating CDKL3. Pathol Res Pract. 2021;225: 153549. doi:10.1016/j.prp.2021.153549.
|
16. |
Zietzer A, Hosen MR, Wang H, et al. The RNA-binding protein hnRNPU regulates the sorting of microRNA-30c-5p into large extracellular vesicles. J Extracell Vesicles, 2020, 9(1): 1786967.
|
17. |
He C, Zheng S, Luo Y, et al. Exosome theranostics: biology and translational medicine. Theranostics, 2018, 8(1): 237-255.
|
18. |
張嬌弟, 馬夢婷, 張倩, 等. 肝癌來源的外泌體中miRNA的作用. 檢驗醫學與臨床, 2022, 19(19): 2725-2728.
|
19. |
Xue C, Gu X, Bao Z, et al. The mechanism underlying the ncRNA dysregulation pattern in hepatocellular carcinoma and its tumor microenvironment. Front Immunol, 2022, 13: 847728.
|
20. |
Gramantieri L, Fornari F, Giovannini C, et al. MicroRNAs at the crossroad between immunoediting and oncogenic drivers in hepatocellular carcinoma. Biomolecules, 2022, 12(7): 930.
|
21. |
Zhi Y, Gao L, Wang B, et al. Ferroptosis holds novel promise in treatment of cancer mediated by non-coding RNAs. Front Cell Dev Biol, 2021, 9: 686906.
|
22. |
Stockwell BR. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell, 2022, 185(14): 2401-2421.
|
23. |
Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol, 2021, 18(5): 280-296.
|
24. |
Qiu S, Zhong X, Meng X, et al. Mitochondria-localized cGAS suppresses ferroptosis to promote cancer progression. Cell Res, 2023, 33(4): 299-311.
|
25. |
Lei G, Zhang Y, Koppula P, et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res, 2020, 30(2): 146-162.
|
26. |
Guo J, Xu B, Han Q, et al. Ferroptosis: a novel anti-tumor action for cisplatin. Cancer Res Treat, 2018, 50(2): 445-460.
|
27. |
Sun X, Ou Z, Chen R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology, 2016, 63(1): 173-184.
|
28. |
Wang W, Green M, Choi JE, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature, 2019, 569(7755): 270-274.
|
29. |
周偉, 吳河水. 鐵死亡機制在胰腺癌中的研究現狀及未來展望. 中國普外基礎與臨床雜志, 2023, 30(3): 364-368.
|
30. |
Zhang X, Sui S, Wang L, et al. Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J Cell Physiol, 2020, 235(4): 3425-3437.
|
31. |
張維志, 劉連新. 鐵死亡機制在肝細胞癌及其耐藥中的研究現狀與前景. 中國普外基礎與臨床雜志, 2022, 29(5): 694-700.
|
32. |
Bai T, Liang R, Zhu R, et al. MicroRNA-214-3p enhances erastin-induced ferroptosis by targeting ATF4 in hepatoma cells. J Cell Physiol, 2020, 235(7-8): 5637-5648.
|
33. |
Zhang T, Sun L, Hao Y, et al. ENO1 suppresses cancer cell ferroptosis by degrading the mRNA of iron regulatory protein 1. Nat Cancer, 2022, 3(1): 75-89.
|
34. |
陳黎, 唐旭東. 非編碼RNA調控腫瘤細胞鐵死亡分子機制的研究進展. 生命科學, 2020, 32(10): 1099-1107.
|
35. |
He GN, Bao NR, Wang S, et al. Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des Devel Ther, 2021, 15: 3965-3978.
|
36. |
Lyu N, Zeng Y, Kong Y, et al. Ferroptosis is involved in the progression of hepatocellular carcinoma through the circ0097009/miR-1261/SLC7A11 axis. Ann Transl Med, 2021, 9(8): 675.
|
37. |
Xu Q, Zhou L, Yang G, et al. CircIL4R facilitates the tumorigenesis and inhibits ferroptosis in hepatocellular carcinoma by regulating the miR-541-3p/GPX4 axis. Cell Biol Int, 2020, 44(11): 2344-2356.
|
38. |
Zhang Y, Luo M, Cui X, et al. Long noncoding RNA NEAT1 promotes ferroptosis by modulating the miR-362-3p/MIOX axis as a ceRNA. Cell Death Differ, 2022, 29(9): 1850-1863.
|
39. |
Guan L, Wang F, Wang M, et al. Downregulation of HULC induces ferroptosis in hepatocellular carcinoma via targeting of the miR-3200-5p/ATF4 axis. Oxid Med Cell Longev, 2022, 2022: 9613095.
|
40. |
Xu Y, Luo X, He W, et al. Long non-coding RNA PVT1/miR-150/ HIG2 axis regulates the proliferation, invasion and the balance of iron metabolism of hepatocellular carcinoma. Cell Physiol Biochem, 2018, 49(4): 1403-1419.
|
41. |
Wu L, Pan C, Wei X, et al. lncRNA KRAL reverses 5-fluorouracil resistance in hepatocellular carcinoma cells by acting as a ceRNA against miR-141. Cell Commun Signal, 2018, 16(1): 47.
|
42. |
Wu LL, Cai WP, Lei X, et al. NRAL mediates cisplatin resistance in hepatocellular carcinoma via miR-340-5p/Nrf2 axis. J Cell Commun Signal, 2019, 13(1): 99-112.
|
43. |
Zhou S, Ye W, Zhang Y, et al. MiR-144 reverses chemoresistance of hepatocellular carcinoma cell lines by targeting Nrf2-dependent antioxidant pathway. Am J Transl Res, 2016, 8(7): 2992-3002.
|
44. |
Shi L, Chen ZG, Wu LL, et al. miR-340 reverses cisplatin resistance of hepatocellular carcinoma cell lines by targeting Nrf2-dependent antioxidant pathway. Asian Pac J Cancer Prev, 2014, 15(23): 10439-10444.
|
45. |
Gao M, Li C, Xu M, et al. LncRNA MT1DP aggravates cadmium-induced oxidative stress by repressing the function of Nrf2 and is dependent on interaction with miR-365. Adv Sci (Weinh), 2018, 5(7): 1800087.
|
46. |
Shi L, Wu L, Chen Z, et al. MiR-141 activates Nrf2-dependent antioxidant pathway via down-regulating the expression of Keap1 conferring the resistance of hepatocellular carcinoma cells to 5-fluorouracil. Cell Physiol Biochem, 2015, 35(6): 2333-2348.
|
47. |
湯麗紅, 馬寧耶, 王巖, 等. ATF4與RPL41在輸卵管癌組織中的表達及其臨床意義. 現代腫瘤醫學, 2019, 27(20): 3690-3694.
|
48. |
Hu Z, Yin Y, Jiang J, et al. Exosomal miR-142-3p secreted by hepatitis B virus (HBV)-hepatocellular carcinoma (HCC) cells promotes ferroptosis of M1-type macrophages through SLC3A2 and the mechanism of HCC progression. J Gastrointest Oncol, 2022, 13(2): 754-767.
|
49. |
Lu Y, Chan YT, Tan HY, et al. Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Exp Clin Cancer Res, 2022, 41(1): 3.
|
50. |
Luo Y, Niu G, Yi H, et al. Nanomedicine promotes ferroptosis to inhibit tumour proliferation in vivo. Redox Biol, 2021, 42: 101908.
|
51. |
Sengupta D, Cassel T, Teng KY, et al. Regulation of hepatic glutamine metabolism by miR-122. Mol Metab, 2020, 34: 174-186.
|
52. |
Cui M, Xiao Z, Sun B, et al. Involvement of cholesterol in hepatitis B virus X protein-induced abnormal lipid metabolism of hepatoma cells via up-regulating miR-205-targeted ACSL4. Biochem Biophys Res Commun, 2014, 445(3): 651-655.
|
53. |
Anderton B, Camarda R, Balakrishnan S, et al. MYC-driven inhibition of the glutamate-cysteine ligase promotes glutathione depletion in liver cancer. EMBO Rep, 2017, 18(4): 569-585.
|
54. |
Qin X, Zhang J, Lin Y, et al. Identification of MiR-211-5p as a tumor suppressor by targeting ACSL4 in hepatocellular carcinoma. J Transl Med, 2020, 18(1): 326.
|
55. |
Babu KR, Muckenthaler MU. MiR-148a regulates expression of the transferrin receptor 1 in hepatocellular carcinoma. Sci Rep, 2019, 9(1): 1518.
|